How to Monitor Die Temperature TI Precision Labs – Temperature Sensors

Presented by TJ Cartwright

Prepared by David Vaseliou

Why Monitor Die Temperature?

Protect Systems

Optimize Performance

How to Monitor Die Temperature

Integrated sensor	Integrated Thermal Diode	External Sensor
	Processor or ASIC	System Board
	Built-In Thermal Transistor, diode	Processor or ASIC External Temperature Sensor

Die Temperature Monitoring Integrated Thermal Diode

Integrated PNP Transistorconnected Configuration

If β >>> then $I_C \approx I_E$

- T = Temperature
- q = charge of electron
- V_{EB} = Emitter-Base Voltage
- η = ideality factor
- k = Boltzmann Constant
- $I_{\rm C}$ = Collector Current
- I_{E} = Emitter Current
- β = Gain of the transistor

Integrated Thermal Diode Sources of Error

Thermal Diode error sources:

- η -factor Variation
- β Variation
- Series Resistance
- Noise Injection

Die Temperature Monitoring External Temperature Sensor

Die Temperature Monitoring Temperature Sensor Design Guidelines

External Temperature Sensor

Integrated Thermal Diode

Thank you!

To find more temperature sensor resources and products visit ti.com/temperature

How to Monitor Die Temperature TI Precision Labs – Temperature Sensors

Quiz

- 1. In which devices is die temperature monitoring important?
 - a) CPUs and GPUs
 - b) ASICs and CPUs
 - c) FPGAs and GPUs
 - d) All of the above
- 2. What is **not** a device used for measuring die temperature
 - a) Integrated thermal diodes
 - b) External temperature sensors
 - c) Thermal ferrite beads
 - d) Integrated temperature sensors

- 3. What source of error is caused by PCB traces or cabling when using the integrated thermal diode method?
 - Series resistance a)
 - b) Noise injection
 - η -factor variation C)
 - β variation d)
- 4. What source of error is trying to be avoided by using shielded twisted pair cables?
 - a) Series resistance
 - b) Noise injection
 - η -factor variation C)
 - β variation d)

- 5. What factor is not used by remote temperature sensors to calculate temperature?
 - η -factor a)
 - Boltzmann constant b)
 - Power consumption of the remote junction C)
 - Base Emitter Voltage d)
- 6. What is an important design guideline when using an external temperature sensor?
 - a) Differential pair routing
 - Shield twisted pair cabling b)
 - Sharing a solid ground plane C)
 - Both a and b d)

4

Answers

- 1. In which devices is die temperature monitoring important?
 - a) CPUs and GPUs
 - b) ASICs and CPUs
 - c) FPGAs and GPUs
 - d) All of the above
- 2. What is **not** a method of measure die temperature
 - a) Integrated thermal diodes
 - b) External temperature sensors
 - c) Thermal ferrite beads
 - d) Integrated temperature sensors

- 3. What source of error is caused by PCB traces or cabling when using the integrated thermal diode method?
 - Series resistance a)
 - b) Noise injection
 - η -factor variation C)
 - β variation d)
- 4. Shielded twisted pair cables are used to avoid what source of error?
 - Series resistance a)
 - Noise injection b)
 - η -factor variation C)
 - β variation d)

- 5. What is not used by remote temperature sensors to calculate temperature?
 - η -factor a)
 - Boltzmann constant b)
 - Power consumption of the remote junction C)
 - d) Base Emitter Voltage
- 6. What is an important design guideline when using an external temperature sensor?
 - a) Differential pair routing
 - Shield twisted pair cabling b)
 - Sharing a solid ground plane C)
 - Both a and b d)

