TI Precision Labs – Ethernet

Presented by Vibhu Vanjari

Prepared by Robert Rodrigues

Crystal oscillator architecture for TI PHYs

Designator	Description
XTAL	AT cut, 25 MHz crystal
CL1, CL2	Load capacitors
R1	Current limiting resistor
Rfb	Feedback resistor

Important crystal parameters to consider:

- Frequency tolerance
- Frequency stability
- Load capacitance
- ESR
- Drive level

Example Crystal Specifications

Parameters	Min	Тур	Max	Units
Frequency Range	24.000 0		52.000 0	MHz
Operating Temperature Range	-40		+125	°C
Frequency Tolerance @ +25°C	-10		+10	ppm
Frequency Stability over Operating Temperature	-10		+10	ppm
Equivalent series resistance (ESR)		< 80	100	Ω
Load capacitance (CL)		4.0		pF
Drive Level (DL)		10	100	μW
Aging (1 year)	-2		+2	ppm

Load capacitors selection

CL1 & CL2 ≠ load capacitance (CL) specified in XTAL datasheet

Current limiting resistor selection

- 1. Start with the first order approximation for R1: $R1 = \frac{1}{2\pi \times 25 \text{ MHz} \times \text{CL2}}$
- 2. Measure $I_{Y1, RMS}$ and determine if the crystal drive level meets the crystal specifications $DL_{max} \ge I_{XTAL, RMS}^2 \times ESR$
- 3. Increase value of R1 if calculated crystal drive level is not within crystal specifications
- 4. Calculate $V_{CL1, pk-pk}$ and ensure it satisfies V_{ih} requirements of PHY's XI pin $V_{CL1, pk-pk} = I_{XTAL, RMS} \times \sqrt{2} \times |Z_{CL1}|$

NOTE: 500 μW or higher crystals may not require a current limiting resistor

To find more Ethernet technical resources and search products, visit ti.com/ethernet

TI Precision Labs – Ethernet

Created by Vibhu Vanjari

- 1. The IEEE 802.3 standard suggests frequency accuracy of +/- 100 ppm what does this include?
 - a) Frequency tolerance
 - b) Frequency drift due to aging
 - c) Frequency stability over temperature
 - d) All of the above
- 2. Ceq decreases when _____
 - a) pin capacitance of XI pin increases
 - b) PCB traces from PHY to XTAL are thicker
 - c) XTAL is moved closer to the PHY, shortening traces
 - d) CL1 and CL2 values are both doubled

- 3. Which of these can cause the drive level to exceed the crystal datasheet specification?
 - a) Decreasing R1
 - b) Decreasing CL2
 - c) Increasing CL1
 - d) Decreasing CL1

Solutions

- 1. The IEEE 802.3 standard suggests frequency accuracy of +/- 100 ppm what does this include?
 - a) Frequency tolerance
 - b) Frequency drift due to aging
 - c) Frequency stability over temperature
 - d) All of the above
- 2. Ceq decreases when _____
 - a) pin capacitance of XI pin increases
 - b) PCB traces from PHY to XTAL are thicker
 - c) XTAL is moved closer to the PHY, shortening traces
 - d) CL1 and CL2 values are both doubled

- 3. Which of these can cause the drive level to exceed the crystal datasheet specification?
 - a) Decreasing R1
 - b) Decreasing CL2
 - c) Increasing CL1
 - d) Decreasing CL1

