Design 2: Peak vs RMS Current TI Precision Labs – Motor Drivers

Presented and Prepared by Anthony Lodi

Overview

- What is peak current?
- What is RMS current? ullet
- Why is peak current important? •
- What role does RMS current play in driving a motor?
- RMS current in Brushed, Stepper, and Brushless DC motors
- Current protection features •

RMS vs. peak current: an example

- Wall outlet in United States is 120V AC
- Voltage actually alternates
 between about +/- 170V
- Root Mean Squared (RMS) value is 120V

• Peak value is 170V

What is peak current and what is RMS current?

- Peak current is the maximum current at a given time
- RMS current is the average current over time

 $Power = (RMS Current)^2 \times Resistance$

Why is peak current important?

- Current spikes are common when driving a motor
- Current spikes can potentially damage equipment
 - Shoot through or external short
 - Rotor lockup
 - Startup
- It is important to monitor these events to prevent damage

What role does RMS current play in driving a motor?

- The current through the stator of the motor produces a magnetic field to perform commutation
- The current through the stators of the motor is related to the torque of the motor

• PWM signals used to adjust the average current flow

RMS current in brushed motors

 Brushed-DC motor drivers use pulse width modulation to adjust the current supplied to the motor to change the torque and speed.

• To find out more info on Brushed-DC motors and motor control, visit the *Motor* Drivers: Brushed-DC Motors section of this training series

Startup current transitioning to RMS current in a Brushed DC motor

RMS current in stepper motors

 Stepper motors step through different current levels in each stator winding to achieve the desired rotor position

• To find out more info on stepper motor commutation and the importance of current, visit the *Motor Drivers: Stepper Motors* section of this training series

RMS current in brushless DC motors

 Trapezoidal vs. Sinusoidal commutation generally uses different current waveforms to perform commutation

 To find out more info on Brushless DC (BLDC) motor commutation and the importance of current, visit the *Motor Drivers: Brushless-DC Motors* section of this training series

Sinusoidal $= \frac{Pe}{RMS}$ Current

Peak Current

 $\sqrt{2}$

Current protection features

- Overcurrent protection
- Thermal protection
- For more information on the safety features that are available in in TI motor drivers, visit the *Motor Drivers: Motor Technology* section of this presentation series

To find more motor driver technical resources and search products, visit ti.com/motordrivers

