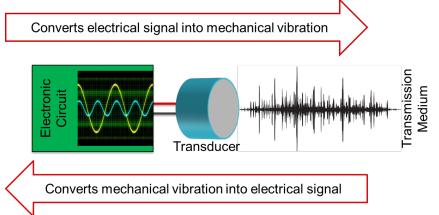
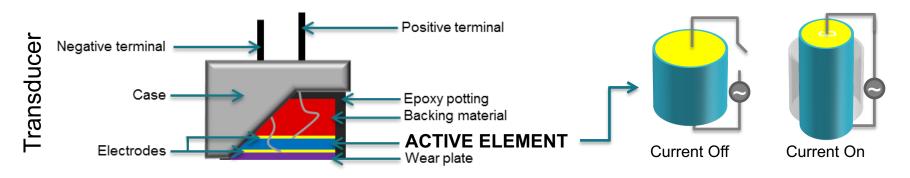
Ultrasonic Piezoelectric Sensor


Presented by Akeem Whitehead

Prepared by Akeem Whitehead

Definition of Piezoelectric Sensor


- A piezoelectric transducer (abbreviated XDCR):
 - uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge.
 - uses the conversion of electrical pulses to mechanical vibrations, and the conversion of returned mechanical vibrations back into electrical energy for the creation and detection of ultrasound.

Piezoelectric Active Element

- The **active element** is the part of the transducer that converts energy between the acoustic and electrical domains.
- When an electric field is applied across the active element, the polarized molecules align with electric field to result in induced dipoles. This alignment causes the material to changes dimensions, a phenomenon known as **electrostriction**.

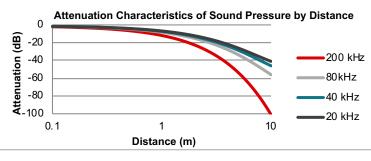
- Thickness of active element is determined by desired frequency of the transducer:
 - Piezoelectric active element is cut to a thickness that is $\frac{1}{2}$ the desired radiated wavelength.
 - The higher the frequency, the thinner the active element.

Transducer Construction

- Two types of transducers are available: *closed-top* and *open-top*
- Type selection should be based on the ambient environment conditions.
 - Will the transducer be exposed to dust, rain, mud, dirt, snow, ice, etc.?

Туре	Closed-top	Open-top
Benefits	 Piezoelectric membrane protected against water (hermetically sealed), heat, and humidity Constructed to mitigate ESD strikes Suitable for outdoor or harsh environments 	 Piezoelectric membrane directly couples to air for increased receiver sensitivity Small driving voltage to generate maximum SPL Large off-the-shelf selection for purchase Low-cost
Disadvantages	 Requires large driving voltage enabled by transformer Limited off-the-shelf selection for purchase High-cost 	Limited to indoor or protected environments

Closed-top

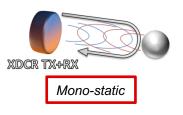

4

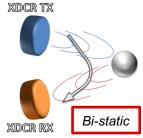
Open-top

Transducer Frequencies

- The resonant frequency of most air-coupled transducers ranges from 30 to 480 kHz
- Frequency selection should be based on the long range requirement
 ↑ Frequency :: ↑ Resolution :: ↑ Narrower Directivity :: ↑ Attenuation :: ↓ Distance

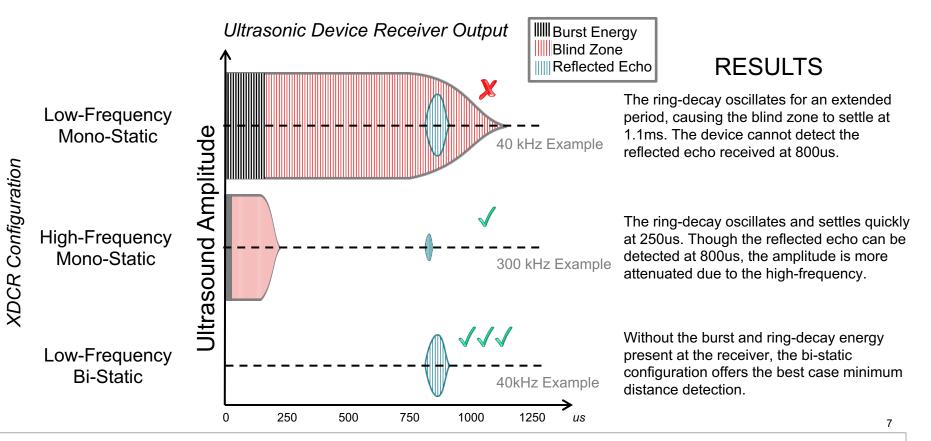
Туре	Low Frequency (<100 kHz)	High Frequency (>100kHz)
Benefits	 Maximize long range performance Large off-the-shelf selection for purchase 	 Maximize resolution (typically <5mm) Short blind-zone in monostatic topology Transmission concentrated into forward facing direction (no side lobes)
Disadvantages	 Long blind-zone in monostatic topology Low resolution (typically >5mm) Prone to common in-band frequency aggressors 	 Reduced maximum detectable range due to fast attenuation Limited off-the-shelf selection for purchase



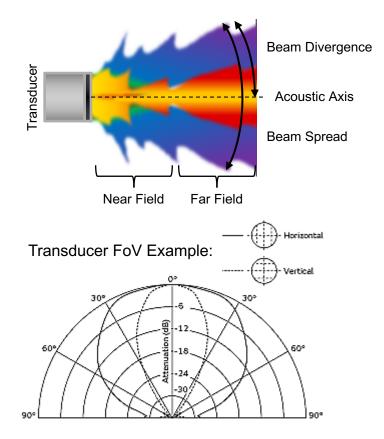


Transducer Topologies

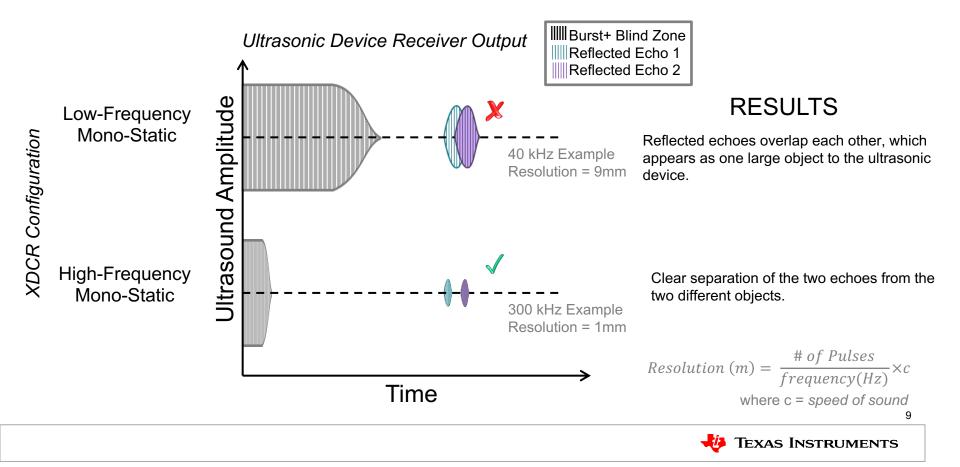
- Two transducer topologies are available: mono-static or bi-static
- Topology selection is primarily dependent on the short range requirement
 - Will the system need to reliably detect ~0cm?


Туре	Mono-static	Bi-static
Benefits	 Single transducer element can be transmit echo, and then listen for returning echoes No need to consider spacing and angular compensation as with separate elements Low-cost and small solution size 	 Dedicated transmitter can generate more SPL Dedicated receiver element is more sensitive and receptive of returning ultrasound No blind zone allows for near 0cm detection Can be used for trip/intercept applications
Disadvantages	 Excitation's ringing-decay creates an initial blind zone, limiting minimum detectable range Limited to roundtrip ToF applications 	 ToF roundtrip calculation must factor in angle of incoming echo at receiver High-cost and larger solution size
		VIDAD IV

Blind Zone Effect on Minimum Distance



Transducer Field-of-View


The field-of-view (FoV) determines the volumetric space the transducer can emit to and detect objects within.

- Ultrasound originates from surface of the piezoelectric active element, not a single point.
 - Round piston source transducers emit a cylindrical sound field, but the ultrasound energy spreads outwards through propagation of the medium.
- Beam spread results in the field-of-view specification, and is also referred to as beam divergence or ultrasonic diffraction.
- Maximum SPL is always along the centerline acoustic axis in the forward facing direction.
- "What transducer parameters affect beam spread?"
 - Beam spread decreases as transducer frequency increases.
 - Beam spread decreases as transducer diameter increases.

Accuracy for Multi-Object Detection

To find more ultrasonic sensing technical resources and search products, visit ti.com/ultrasonic

