Considerations for Designing with Humidity Sensors

Presented and prepared by Brandon Fisher

Package selection

WCSP Style

HDC2010

TEXAS INSTRUMENTS

Benefits

Cost

Benefits

Cost

Size

Ease of use •

Protective Assembly Tape

Protective Filter

Benefits Faster and cheaper assembly

Benefits Dust and Moisture protection

Thermal design: Board layout

Thermal Layout

- Temperature accuracy is critical to RH Accuracy
- Maximize thermal ulletresistance between sensor and error sources

Texas Instruments

Thermal design: Board layout

Thermal Layout

- Temperature accuracy is critical to RH Accuracy
- Maximize thermal resistance between sensor and error sources
- Cutouts, Islands, and perforations will reduce thermal conduction

Thermal design: Board layout

Thermal Layout

- Temperature accuracy is critical to RH Accuracy
- Maximize thermal resistance between sensor and error sources
- Cutouts, Islands, and perforations will reduce thermal conduction

Thermal design: Response time Rule of thumb: $1^{\circ}C$ temp error $\rightarrow \sim 1\%$ RH error

 $\tau = 60s$

System RH accuracy and hysteresis

7

System RH accuracy and hysteresis

8

Case design for RH accuracy

Case design for sensor protection

Environmental conditions

To find more humidity sensor resources and products, visit ti.com/humidity

