Protecting Delta-Sigma ADC from EOS – RTD Measurement Overview in PLC TI Precision Labs – ADCs

Presented by Scott Cummins

Prepared by Dale Li

RTD (Resistance Temperature Detector) Sensor

- PT-100 exhibits 100Ω resistance at 0°C and has wide temp range: -200°C to 850°C
- R varies from 20Ω to 400Ω , Currents are pumped into RTD and voltage is measured
- Sensor with a predictable resistance vs. temperature
- Measure the resistance and calculate temperature based on the Resistance vs. Temperature characteristics of the RTD material
- Overstress (EOS) protection is an increasingly popular requirement from customers.

Application Notes:

sbaa275.pdf

sbaa310.pdf

sbaa330a.pdf

sbaa334.pdf

sbaa336a.pdf

sbaa329a.pd

sbaa201.pdf

TEXAS INSTRUMENTS

Typical Block Diagram: 2-wire RTD Inputs

2-Wire RTD Block Diagram

Circuit Notes

- 2 terminal input (minimum)
- High-side reference (low-side is possible as well)
- One excitation current required
- No lead wire compensation
- **R**_{RFF} is typically largest source of error

Key ADC Specs

- Differential VREF inputs
- **1x current sources**
- Low-noise
- Integrated gain stage

**From ADS124S08 EVM

Typical Block Diagram: 3-wire RTD Input

3-Wire RTD Block Diagram

Circuit Notes

- 3 terminal input (minimum)
- **High-side reference (low-side is** possible as well)
- Excitation via 1x or 2x current sources (1x IDAC requires 2x measurements)
- Lead wire compensation is possible
- **R**_{RFF} is typically largest source of error

Key ADC Specs

- Differential VREF inputs
- 2x or 1x current sources
- Low-noise
- Integrated gain stage

**From ADS124S08 EVM

Typical Block Diagram: 4-wire RTD Inputs

4-Wire RTD Block Diagram

Circuit Notes

- 4 terminal input
- High-side reference (low-side is possible as well)
- One excitation current required
- Inherent lead wire compensation
- **R**_{RFF} is typically largest source of error

Key ADC Specs

- Differential VREF inputs
- **1x current source**
- Low-noise •
- Integrated gain stage •

**From ADS124S08 EVM

Common 3-wire RTD Measurement without Protection

Ratiometric Measurement:

IDAC noise and drift are cancelled.

Lead Wire Resistance Cancellation:

- Lead resistance is related to length, material and cross-sectional-area of the conductor.
- ✓ One IDAC needs two measurements.
- Two IDACs need current chopping to minimize

the effect of mismatched current sources.

Note: 1-meter PT100 RTD sensor from Adafruit.

3-Wire RTD, Low-Side Reference Measurement Circuit With One IDAC Current Source (Common-mode capacitor not shown)

6

🜵 Texas Instruments

Why do we need Two measurements

Two measurements by taking difference

between V_1 and V_2 :

- \succ Cancel lead wire resistance.
- \succ Cancel the offset of ADC.
- \succ Low side reference requires two measurements.
- > High side reference measurement only requires one measurement, however the resistor selections (RRTD, Rref and Rbias) and IDAC current are limited by compliance voltage.

Note: RRTD =100 Ω , RLead1 = RLead2 = RLead3 = 10 Ω

Why do we need Two measurements

Two measurements by taking difference

between V_1 and V_2 :

- \succ Cancel lead wire resistance.
- \succ Cancel the offset of ADC.
- \succ Low side reference requires two measurements.
- > High side reference measurement only requires one measurement, however the resistor selections (RRTD, Rref and Rbias) and IDAC current are limited by compliance voltage.

Note: RRTD =100 Ω , RLead1 = RLead2 = RLead3 = 10 Ω

Thanks for your time! **Please try the quiz.**

Questions: Protecting RTD input Delta-Sigma

- 1. (T/F) The two wire RTD configuration uses multiple current sources to cancel lead resistance error.
 - a. True.
 - b. False.
- 2. (T/F) To achieve lead wire error cancelation, a three wire configuration must have equal resistance in each lead.
 - a. True
 - b. False.

10

Questions: Protecting RTD input Delta-Sigma

- 3. What does PT-100 stand for?
 - a. Prime Temperature 100°C.
 - Part tolerance 100Ω b.
 - Specific manufacture model number for high temperature RTD. C.
 - d. Platinum RTD that is 100Ω at 0° C.
 - e. Copper RTD that is 100Ω at room temperature.

Thanks for your time!

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

