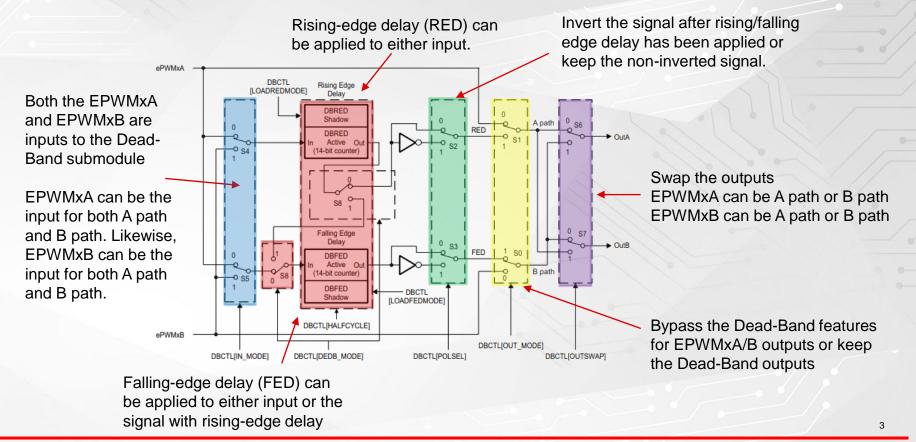
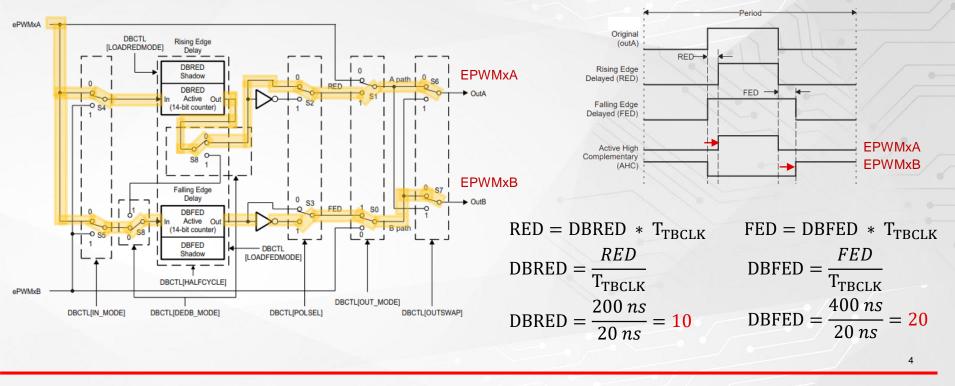

ePWM Dead-Band Submodule

C2000 Enhanced Pulse Width Modulator (ePWM) Series


Dead-Band (DB) Submodule

- Add programmable custom delay to rising/falling or both rising and falling edges
- Program signal pairs


Dead-Band Submodule: Deeper Look

Dead-Band Submodule: Utilizing Dead-Band Features

Example: How do I generate active high complementary (AHC) signals with a 200 ns rising-edge delay and a 400 ns falling-edge delay?

Dead-Band Submodule: Utilizing Dead-Band Features - Programming

We saw how to set the dead-band switches and how to calculate the DBRED and DBFED values. How do we program this?

Common Dead-Band Modes Mode for the Dead-Band Submodule		~
Active High	SETUP THE DEAD-BAND MODULE	
Active Low	SETUP THE DEAD-BAND MODULE	
Active High Complementary	SETUP THE DEAD-BAND MODULE	
Active Low Complementary	SETUP THE DEAD-BAND MODULE	
Dual Edge Delay Mode	SETUP THE DEAD-BAND MODULE	
ising Edge Delay Input	Input signal is ePWMA	~
alling Edge Delay Input	Input signal is ePWMA	•
ising Edge Delay Polarity	DB polarity is not inverted	•
alling Edge Delay Polarity	DB polarity is inverted	•
nable Rising Edge Delay		
ising Edge Delay Value	10	
nable Falling Edge Delay		
alling Edge Delay Value	20	
wap Output for EPWMxA		
wap Output for EPWMxB		

Additional ePWM Resources

- <u>C2000 Academy</u> with Hands-on Labs
- TI Precision Labs: PWM Basics Overview
- TI Precision Labs: Motor Interfaces and PWM Frequencies
- ePWM Application Reports
 - Flexible PWMs Enable Multi-Axis Drives, Multi-Level Inverters
 - Using PWM Output as a Digital-to-Analog Converter
 - Using the ePWM Module for 0% 100% Duty Cycle Control
 - Leverage New Type ePWM Features for Multiple Phase Control

Check Video Description for Additional Resources

