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Hello, and welcome to the TI Precision Lab video covering how a PCB trace acts as a 
wave guide.  This is part of a larger series on PCB layout for good EMC. This series is 
specifically intended to cover mixed signal designs where the digital signals are 
less than 100 MHz and clock rise times are greater than 1 ns.  This video looks 
at how return current flows relative to the signal trace.   The video describes the 
problem with ground plane discontinuities, and also describes the best way to 
use vias to transition layers and minimize EMI.  Lets start by considering a PCB 
trace as a wave guide.
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Think of your PCB trace as a wave guide
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This slide shows how a voltage step propagates down a PCB trace. In this example, we show a 
trace separated from a ground return plane by PC board dielectric material. As the signal 
propagates down the trace, a changing electric and magnetic field follow the wave front.  The 
electromagnetic wave propagates at a very fast rate of 1.8×108 m/s, whereas the actual 
conduction of electrons from the positive terminal to the negative terminal happens at a very slow 
rate of 0.01 m/s. The key point here is that an electromagnetic wave is traveling through the PC 
Board dielectric and is being guided by the trace on the top and the ground return plane on the 
bottom. Think about this wave guide as we step through today’s material.
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Transmission line view of signal propagation
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Another way of looking at the same circuit is to consider the transmission line as a series of LC 
Circuits. As the wavefront progresses down the PCB trace, the capacitor and inductor will 
charge to steady state. An instantaneous current will be seen at the wavefront, but before and 
after the wavefront the LC circuit will be at steady state. This is really just another way of looking 
at the same circuit shown in the last slide. Remember this wave front is traveling at a very fast 
rate but conduction current is moving slowly.  We will look at this closely in the next slide.
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Displacement current vs. conduction current
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This slide is meant to illustrate the difference between conduction current and displacement 
current. It shows a simple circuit with a voltage source, wire, and load. Conduction current is the 
travel of an electron from the positive terminal of the voltage source, through the load to the 
negative terminal of a voltage source. This occurs at a very slow rate of .01 m/s. The 
displacement current, on the other hand, travels at a very high rate of 141x106 m/s in FR4 PCB 
material. Think of displacement current as a chain reaction of electron collisions starting at the 
source and traveling through the load back to the negative terminal of the source. As an as an 
analogy, consider a hose filled with water. When you turn on the water faucet, water will instantly 
come out of the other end of the hose. A chain reaction of water molecule collisions starts at the 
faucet, continues through the hose, and forces water out of the end. It may take some time for 
the water from the faucet to reach the end of the hose, but water will squirt out the hose the 
instant the faucet is turned on.  Propagation of electromagnetic waves and displacement current 
happen in a similar manor.  The wave front and displacement current move quickly but the 
conduction current is very slow.
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Return current in high vs low frequency
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Now let’s discuss how return current flows in a PCB ground plane relative to the top layer signal 
trace for low frequency signals. The figure shown here is the top layer of a printed circuit board 
where the signal applied to the connector travels across the red trace on the top of the PCB to 
the DUT. [Click] For low frequency signals the return current in the ground plane will spread 
across the board and follows the path of least resistance.  In this case, “low frequency” means 
signals less than 100kHz.
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Return current in high vs low frequency
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For signals above 100kHz, the return current will flow 
directly beneath the signal trace. [Click] This is a very 
useful and important electrical characteristic, because 
it means that the return currents for high frequency 
signals that are physically separated from each will not 
mix.  When the return current of two signals mix this 
will cause interference or crosstalk between the 
signals.  Later we will look at the details on how PCB 
spacing impacts crosstalk.
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The many shapes of Mr EMI
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A silly analogy that helps explain how the wavefront
beneath a signal trace changes in size is “Mr EMI”.  Mr. 
EMI is the wavefront between the top layer and the 
ground return plane.  Mr. EMI conforms to the size of 
this wave guide, so if the PCB trace is located close to a 
ground return plane, the size of the wavefront will be 
small.  On the other hand, if the distance between the 
signal and return path is large Mr. EMI will grow large.  
Also, if there are gaps in the return path Mr. EMI will 
stretch to conform to the return path.  Mr. EMI is not 
your friend, so keep him as small as possible.  I know 
this is a little silly, but I hope it helps you visualize how 
different PCB geometries can change the size of the 
wavefront.    
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A well designed “wave guide” style PCB design
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Now let’s look at how a signal travel across a printed circuit board when the signal transitions 
with vias between the top and bottom layer.  Notice that this example layout uses an unusual 
stackup with two internal GND planes.  It turns out that this is a very good stackup for low EMI.  
We will cover this in detail later. Now let’s will look at a well designed example using vias to 
transition layers, then we will look at a poorly designed example. [Click] Think of the signal layer 
and ground return paths as a wave guide where the wave travels. When the signal transitions 
from the top layer to the bottom layer the ground return needs to transition from internal ground 1 
to internal ground 2. It makes transition using the stitching via as a vertical wave guide from the 
top to bottom. The entire signal path in this example has a good continuous wave guide for the 
signal to travel. Now lets look at the same circuit done the wrong way.
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PCB design without GND stitching
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Here we have the same circuit without the stitching vias. In this case, the signal transitions from 
the top layer to the bottom layer without a vertical wave guide to contain the wavefront. Thus, you 
will see RF emissions at the via transition point.  You may be thinking that your system has only 

a 50 MHz clock, so how can we get high frequency emissions. Don’t forget the Fourier 
series for the square wave showed frequency content 
into the gigahertz, and the waveform rise time determines how much high frequency 

content you will have.  The point of the slide is to emphasize the importance of using stitching 
vias to provide a continuous wave guide for signals to transition between layers.  
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Signals above and below GND on multi-layer board
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Here’s a six layer board example for via transition from the top layer to inner signal one. This 
type of configuration has a nice advantage in that it does not require stitching vias. [click] The 
ground one inner plane acts a return path for both the top layer and inner signal one. It also acts 
a vertical wave guide for the wavefront transitioning between layers. Note that because of the 
skin affect ground return currents on the top and bottom of the ground return will not mix with 
each other. The skin effect is a phenomenon where high frequency currents only travel on the 
outside of conductors.
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Distributed Via distributed array approach
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One approach to connecting internal ground planes together, and also connecting top and bottom 
fill to ground is to use a distributed array of stitching vias. Many printed circuit board layout 
software programs provide an automatic method for creating this distributed ray array. The 
spacing between the vias can be set to be a tenth of the wavelength for the maximum applied 
frequency.
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Transition return layer with local stitching capacitor
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This side shows a more common PC Board stack up where there is an internal ground plane as 
well as an internal power plane. This is a more common stack up then the previous example with 
two ground planes. However this can be a little bit more challenging to it to achieve good EMI 
characteristics performance. [click] It’s interesting to note that signal return current will flow in 
the closest adjacent plane. This is true regardless of whether the plane is a power plane or a 
ground plane. So in this example when the signal transitions from the top layer to the bottom 
layer, the return path needs to transition from internal ground1 to the internal power plane. One 
problem here is that you cannot have a stitching via from ground to power as you would short 
ground to power. Instead the return current must transition through a stitching capacitor. In many 
cases the stitching capacitor will simply be there decoupling capacitor closest to the via 
transitioning between layers. In this case you can see that the signal transitions between the top 
and bottom layer with minimal RF emissions.
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Transition return layer without local stitching capacitor
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The slide is the same design as in the previous slide, but no stitching capacitors are used. When 
transitioning from the top layer to the bottom layer there is no good path for the return signal to 
transition from internal ground to internal power. [click] This can lead to RF emissions when 
transitioning layers. This problem can be avoided through sufficient use of stitching or decoupling 
capacitors.
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Is the stitching capacitor as good as a stitching via?
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One question you may ask is whether the stitching 
capacitors are as effective as stitching vias for 
connecting two planes together.  The short answer is 
that the stitching capacitors will generally will not be as 
effective at high frequencies as the stitching vias.  The 
reason is that The stitching capacitor will require two 
via and a capacitor.  The capacitor and both via will 
have inductance that limit the effectiveness of this AC 
connection between the two planes.  The stitching via 
will also have inductance but it will be less than the 
stitching capacitor and it’s two associated via.  Also, 
stitching via are small and virtually free of cost whereas 
the capacitor will take up PCB space and cost and 
complexity to the design.  However, in general the 
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stitching capacitors are decoupling capacitors which are 
required in any case.   
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Distributed decoupling distributed array approach
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Some PCB designers will used a distributed array of 
stitching or decoupling capacitors similar to the via 
array discussed previously.  I think it makes more sense 
to strategically locate the capacitors where they are 
needed.  We will focus on the importance of local 
decoupling later in this presentation.     
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Previously we mentioned that for high frequency signals the return current will travel on the 
ground plane directly beneath the trace. This requires a continuous ground plane. If there’s a slot 
or discontinuity in the return path, the ground return current will have to find a different path. 
[click] This creates emissions RF emissions. The example shown here will emit RF signals from 
the board as well as interfere with the victim trace shown.  The emissions caused by slots in the 
PCB can be very significant and this issue is one of the leading causes for system level EMC 
problems.
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Stitching capacitors
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Of course, the best practice is to avoid the slot in the 
ground plane.  In some cases this may not be practical.  
One way to minimize the impact of a discontinuity in 
the return path is to use stitching capacitors, or a 
ground bridge adjacent to the trace.  [click]  In this 
example, you can see that the return current 
transitions from the ground plane to the top layer 
stitching capacitors to travel over the gap in the ground 
plane. 
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Thanks for your time!
Please try the quiz.
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That concludes this video – thank you for watching! Please try the quiz to check your 
understanding of this video’s content. 
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1. In the PCB layout below, a signal trace is driven above 
5V and 3.3V power planes.  Are there any potential EMI 
issues with this design?

a) No issues with this PCB design.  Return current will 
flow in the ground plane.

b) The return current will flow in the adjacent power 
planes, but the power plane is split so high 
frequency return current will not be able to stay 
under the signal trace causing emissions. 

Quiz: Introduction PCB Design for Good EMC
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Question 1, In the PCB layout below, a signal 
trace is driven above 5V and 3.3V power 
planes.  Are there any potential EMI issues 
with this design?

The correct answer is “b”, The return current will 
flow in the adjacent power planes, but the 
power plane is split so high frequency 
return current will not be able to stay under 
the signal trace causing emissions. [click] 
The animated wave front shows the return 
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current has no obvious path so RF emissions 
happen and the return current spreads 
across wider regions of the board.
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2. In the PCB layout below, what are some approaches 
that could be used to improve EMI performance?

a) The trace routing could be adjusted so that it stays 
above the 3.3V power plane only and does not 
cross over the gap to the 5V plane.

b) The ground plane could be moved so that it is 
directly adjacent to the top signal layer.  Thus, the 
top signal will have a continuous return path. 

c) Stitching capacitors could be used to tie the two 
planes together from an AC perspective and bridge 
the return gap.

d) All of the above.

Quiz: Introduction PCB Design for Good EMC
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Question 2, In the PCB layout below, what are some 
approaches that could be used to improve EMI 
performance?

The correct answer is “d”, All of the above.  Probably the easiest 
solution is to simply re-rout the trace so that the return current 
has a continuous path on the 3.3V plane.  Another approach is to 
make sure that the signal trace is always adjacent to a solid GND 
plane, so changing the stackup so that GND is beneath the top 
signal will work.  Finally providing a connection with a stitching 
capacitor between the planes is a possible approach to connect 
the two planes from an AC perspective.

20



3. For the two circuit boards below, an analog signal trace is placed near a digital signals trace.  The 
layout is the same for both PCB.  The only difference is the PCB thickness.  Which layout will 
minimize the interference between digital and analog?

a) Design 1

b) Design 2

c) They are the same from a crosstalk perspective.

Quiz: Introduction PCB Design for Good EMC
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Question 3, For the two circuit boards below, an analog signal trace is 
placed near a digital signals trace.  The layout is the same for both 
PCB.  The only difference is the PCB thickness.  Which layout will 
minimize the interference between digital and analog?

The correct answer is “b”, Design 2.  The thick dielectric provides room for the 
return current to spread out.  Let’s take a look at the Mr EMI analogy on the 
next slide.
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Quiz: Introduction PCB Design for Good EMC
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3. For the two circuit boards below, an analog signal trace is placed near a digital signals trace.  The 
layout is the same for both PCB.  The only difference is the PCB thickness.  Which layout will 
minimize the interference between digital and analog?
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Here you can see that Mr. EMI has more room to 
spread out for the thicker dialectric.  Thus the fields for 
design 1 overlap but on design 2 the fields are much 
smaller and are separate from each other.  This means 
that the crosstalk is lower for design 2 than 1.
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Thanks for your time!

23

That’s all for todays video.  Thanks for watching.  
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