Thermal Design of a PCB TI Precision Labs – Motor Drivers

Presented and prepared by:

Cris Kobierowski

We will learn

- The importance of proper heat regulation
- Methods
 - Strategic PCB layout
 - Via farms
 - Dog bones
 - Heat sinks

Heat flow

- · Heat is trying to reach equilibrium with the room temperature
- Data sheets include thermal information and calculations

$$\mathsf{T}_{\mathsf{J}} = (\mathsf{P}_{\mathsf{D}} \times \theta_{\mathsf{J}\mathsf{A}}) + \mathsf{T}_{\mathsf{A}}$$

PCB heat distribution

- Identify major heat sources [i.e. drivers, microcontrollers, etc]
- PCB can be used to help transfer heat

PowerPAD[™] Thermally Enhanced Package App Note:

https://www.ti.com/lit/an/slma002h/slma002h.pdf?ts=1658425063570&ref_url=https%253A%252F%252Fwww.google.com%252F

Device placement and heat concentration

Ground pours

worst

			12
			4
	\sim		
	Y		
	Ō		
	1.1		
	5		
	1		
			-1
			ri.

best

Ground pours on both sides

Best Practices for Board Layout of Motor Drivers: https://www.ti.com/lit/an/slva959b/slva959b.pdf?ts=1658420607773&ref_url=https%253A%252F%252Fwww.google.com%252F

🜵 Texas Instruments

Ground pours 8V

Continuous

Broken / isolated

Ground pours 25V

Continuous

Broken / isolated

Ground pours 37V

Continuous

Broken / isolated

Thermal pads

- Exposed thermally conductive material
- Can be above or below device depending on the package

Via farms

Best Practices for Board Layout of Motor Drivers:

https://www.ti.com/lit/an/slva959b/slva959b.pdf?ts=1658420607773&ref_url=https%253A%252F%252Fwww.google.com%252F

Heat sink

- Thermally conductive metal
- Cut to maximize surface area for better heat transfer
- Commonly used with top-side thermal pads but can be used for bottom-side
- Heat sink drawing

TI training: 5.4 Heat sinks and isolation: https://training.ti.com/heat-sinks-and-isolation?context=1147983-1148063-1148067

Key takeaways

- Always have heat in mind
- Common methods to use
 - Strategic PCB layout
 - Via farms
 - Dog bones
 - Heat sinks

