Selecting an External Crystal TI Precision Labs – Microcontrollers

Presented by Henok Taffere Prepared by Brandon Fisher

External crystals

- More accurate with less drift over operating conditions
- Lower power consumption than internal sources
- Long startup time
- Frequency is set by source
- Added system cost
- Needs special board layout considerations to operate properly

🤴 Texas Instruments

External crystal accuracy

Internal Oscillator Specification

	PARAMETER	TEST CONDITIONS	Vcc	MIN TYP MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	3	μA
f _{REFO}	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	32768	Hz
	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V	±3.5%	
		T _A = 25°C	3 V	±1.5%	

 $F_{RANGE} = 32768 \, Hz \, \pm 491.52 \, Hz$

External Oscillator Specification

ParametersMinTYPMAXUnitsFrequency Tolerance @ +25°C-10+10ppmNote:
$$1 ppm = 0.0001\%$$

 $F_{RANGE} = 32768Hz \pm 0.33Hz$

3

Accuracy stability and drift

Parameters	Conditions	Min	ТҮР	MAX	Units
Frequency		3.57		70.000	MHz
Frequency Tolerance	25°C			±30	ppm
Temperature Coefficient		-0.04	-0.03	-0.02	ppm/T ²

Parameters	Conditions	Min	ТҮР	МАХ	Units	
Frequency	25°C			±30		
Tolerance	-10 ~ + 70 °C			±80	ррш	

Crystals also drift over time, the rate at which they drift is often given as "Aging"

Parameter	МАХ	Units
Aging	±3	ppm/year

4

Load capacitance

Parameters	MIN	ТҮР	МАХ	Units
Load Capacitance (C _L)		12		pF

Really:
$$C_L = \frac{C'_1 * C'_2}{C'_1 + C'_2}$$
 Where: $C'_x = C_x + C_{Stray}$
In most cases, we choose $C_1 = C_2$: **So:** $C_L = \frac{C_1 + C_{Stray}}{2}$
For this example:
 $C_1 = C_2 = 22_{pF}$ if $C_{stray} = 2pF$
We can check if this is right:
 $C_L = \frac{C_1 + C_{Stray}}{2} = \frac{22pF + 2pF}{2}$
 $C_L = 12pF$

5

Equivalent series resistance

Design Parameter	Higher ESR Crystal	Lower ESR Crystal
Safety Factor	Worse	中 Better
Startup Time	Worse	Better
Power Dissipation	Worse	🕂 Better
Peak Drive Level	Worse	📥 Better
Cost	🕂 Better	Worse
PCB Footprint	📥 Better	Worse

Equivalent series resistance

How do you know how high of an ESR Value is too high?

To find more TI microcontroller technical resources and search products, visit **ti.com/Microcontrollers**.

