
TI Information – Selective Disclosure

Embedded Deep Learning Deployment. Demystified.

TI model Zoo - Ready-to-use, Easy-to-use and Efficient AI models

Jacinto™ AI monthly webinar series

2022 Sep

TI Information – Selective Disclosure

Code examples used in the webinar are below.
https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1014084/tda4vm-jacinto-ti-edge-ai-monthly-webinar-jul-2021-embedded-deep-learning-deployment-demystified

TI Information – Selective Disclosure

Why is “deployment” important in deep learning?

Training is done once or a few times : Off-line operation

Source: K. Lee, V. Rao, and W. C. Arnold, “Accelerating facebooks infrastructure with application-specific hardware,” https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/, Facebook, 3 2019.

Training is off-line, Inference is real-time!

✓ Inference needs to be efficient – faster and low power

✓ That is what we will cover in this webinar

✓ TI Jacinto’s Edge AI processors make the model deployment as efficient and simple as it can be!

Inference happens during the life of the product : Real-time operation

Deep learning has two parts: Training and Inference

How many inference

queries happen a day

across all AI applications?

200 trillion queries/day
1

Growing exponentially as more

products are including AI

TI Information – Selective Disclosure

Webinar | Agenda

Recap from the previous webinar:

Hello world program: Step1: PC Step2: Embedded on ARM. Step3: Embedded with Deep learning acceleration

▪ Model Deployment in the edgeAI processor

▪ What is in the model?

▪ Model compilation procedure

▪ Open-source run time options

▪ Hands-on examples

▪ Model Zoo

▪ Performance benchmarking

▪ $249 Edge AI EVM $187.5 BeagleBone AI-64

▪ Call to action

TI Information – Selective Disclosure

Deep learning | Training and Inference

Computing Platform (Training)

Forward Pass

results

Error

Backward Pass
Parameters

Update

Software
Frameworks…

Inference (Embedded) One pass

results

Forward Pass

Trained
Parameters

Inputs

Embedded Hardware (Inference)

TI Information – Selective Disclosure

AI Deployment in your system | Three steps

Train anywhere, Develop anywhere
Compile & Optimize for TI SoC

Using industry standard Compilers/RTs

Deploy on TI SoC
Using industry standard APIs

• Common representation
• Post Training Quantization
• Calibration
• Optimization

• Compilation

TVM Compiler/ TFLite / ONNX-RT

TI Edge AI Processor

TFLite RT /ONNX-RT/Neo-AI-DLR

TIDL RunTime

Linux

Cortex-A DLA

RTOS

TIDL Library

1. TI Model Zoo (60+ models)
• Model Selection tool
• New weights

2. Own model

Optional QAT (Quantization artifacts tool) from TI

https://github.com/TexasInstruments/jacinto-ai-devkit

Accelerated inference using open-source industry standard RunTime Engines

Out of box optimized inference support for 60+ models
DL Tools & software to reduces

model development time

1 2 3

https://github.com/TexasInstruments/jacinto-ai-devkit

TI Information – Selective Disclosure

1. Run the program first on the PC (using industry standard tools)

2. Port the ”same program” to embedded platform: J7 EVM device

3. Run with deep learning acceleration

Embedded AI “Hello World“ in 3 steps

Recap from previous webinar

TI Information – Selective Disclosure

Hello world | on Jacinto EVM in the cloud (DL acceleration)

Two things are new in this step
1) Compile the model to the TI’s DL accelerators

2) Use the compiled output for inference

▪ Rest of the steps are similar to previous steps

▪ A delegate option in the Interpreter is a way to “offload” parts of the

network to hardware accelerator

▪ Model compilation uses the same Tensorflowlite APIs

▪ Acceleration happens automatically by just adding one line of code-

tflite.load_delegate (APIs coming from TFLite)

TI Information – Selective Disclosure

Hello world! | PC to TI Edge AI Processor Same Code

❑ 2.81 fps AI processing (ONLY ARM)
CPU is involved only in the beginning for small amount of time (Blue)

❑ 303.6 fps AI processing (TIDL acceleration)
CPU is involved only in the beginning for small amount of time (Blue)

Previous webinar results: HelloWorld is working fine and faster. But, is there any difference?

Confidence in “Hello Dog” went down! 94.4% to 87.45%. We will address this in this webinar.

TI Information – Selective Disclosure

Deep dive into the deep learning model

TI Information – Selective Disclosure

Deep learning model | What is inside?
▪ Focusing on vision analytics in this webinar – More computationally intensive

▪ Convolution Neural Networks (CNN’s) are universal functional approximators

1. Classification 2. Object Detection (Hello World Example) 3. Semantic Segmentation

▪ Three primary functions

InceptionNet was named after movie “inception”

Fun Fact!

TI Information – Selective Disclosure

Deep Learning Model Metrics | TOPS, FPS and FPS/TOPS

TDA4V Embedded EdgeAI processor

• Can compute 64x64 =4096 MACs/cycle

• 1 MAC = 2 Ops

• TDA4VMID @ 1GHz Frequency

4096x2x1e9 = 8 Tera Ops (TOPs)

• Basic kernel for a CNN is a convolution

• Convolutions can be efficiently done via matrix

multiplication!

• Complexity of any network can be measured in MACs

• Scales linearly with input image resolution

• More TOPs => more processing capability

– However, not all TOPs are created equal

– Not reflective of DL accelerators capability to run CNN’s

• Better Performance Metric
– Given a CNN and input resolution (pixels), how many Frames per

Second (FPS) can be processed?

• Even better Metric

– How many FPS per TOPS? Indicates architecture, energy efficiency

TI Information – Selective Disclosure

Safety MCU
CAN-FD

LIN

Boot
Flash

SPI

DDR

Radar/

LIDAR
MCU

Ethernet
Switch

PCIe

Image

Sensor

Applications

Processor

GPU
(analytics)

General
compute

Typical Architecture

ISP

PCIe

GPU
(analytics)

ISP

Ethernet
Switch

General
compute

Safety MCUMCU

disparity

Model deployment | with purpose-built solutions

TI Jacinto TDA4x Processor

LPDDR4

Multi-core A72

DSP

Safety MCU

Deep Learning Accelerator

CSI-2 ports, USB 3,
Ethernet & PCIe

Switches

Large Internal mem,
highspeed bus

Imaging & Vision accelerators
ISP | LDC| MSC| NF | SDE | DPF

Jacinto™ TDA4x

Security
Accelerators

Video codec
accelerator

GPU Display

Multi-core
MCU

SIL-3

SIL-2

TIDL (TI Deep learning accelerator): AI in low power, AI with low complexity

Simple Linux based programming using popular software frameworks

TI Information – Selective Disclosure

C7x + MMA | Industry’s most efficient Deep Learning Accelerator

▪ C7x DSP + Matrix Multiply Accelerator (MMA)
– Programable accelerator for tensor, vector and scalar processing

▪ Self sustained for DL work-loads
– No dependency on host ARM, GPU, has its own DMA engine and

memory sub-system

▪ Smart memory architecture results in up to 90%

utilization of the accelerator and DDR BW savings

– High bandwidth interconnect, Large internal memory, 4D

programmable DMA, Data forward engine

CScalar
Vector

L1I

L1D

L2

MSMC

C7x Core

Safety Prefetch

Safety Hist/LUT

Safety

Firewall DMA

Coherence

Safety

Streaming
Engine

MMU

Safety

MMA

L3 DCUDMA

8 TOPS, Int-8, 80 GFLOPS @ 1GHz, per core

High FPS/TOPS

Designed for Lower power

Enables Fan-less design

512-bit wide, 64 GB/sec

Designed for Functional Safety

ECC on data memory Using TI Proprietary Technology

Lowest #of DDR interfaces &

bandwidth

TI Information – Selective Disclosure

Model Compilation and Deployment

TI Information – Selective Disclosure

Model compilation | TI Deep Learning

▪ Application level programming (Python or C++)

▪ No need to learn any special CPU programming

▪ Flexibility to tweak compilation

▪ Support for popular deep learning run times

▪ Tensorflow lite, ONNX, TVM

TI Information – Selective Disclosure

Common Development Environment | PC and TI Edge AI Processor

Linux OS

PC or TI Processors

Same code for

programming

CPU (optional GPUs)

TFLite/ONNX-RT/Neo-AI-DLR

User Application

Python / C

API | interpreter | scheduler

TFLite/ONNX-RT/Neo-AI-DLR

Linux OS

A72

TFLite/ONNX-RT/Neo-AI-DLR

TIDL RunTime

TIDL OpenVX Node

Deep Learning Accelerator

-+ * =

C7x DSP with MMA*

IPC

ARM

Cortex A72

ARM

Cortex A72

*MMA: Matrix Multiplication Accelerator (Tensor Processing Unit)

TFLite/ONNX-RT/Neo-AI-DLR

User Application

Python / C

API | interpreter | scheduler

TFLite/ONNX-RT/Neo-AI-DLR

PC TI Edge AI Processors (TDA4VM)

TI Information – Selective Disclosure

17

RunTime Engine
Training

framework

Optimizer / Compiler /

Graph format

TensorFlowLite™ format

ONNX™ format

TVM / SageMaker Neo™

compiler

TFLite RunTime:: TIDL

ONNX-RunTime:: TIDL

Neo-AI-DLR::TIDL

Development environment | Industry standard options

Jupyter notebooks enable seamless access to EVM farm

in a python environment

Easy hardware deployment: cloud or EVMEasy Development Environment

▪ Linux Callable APIs

▪ Support of Python and C/C++ API

▪ Support of Multiple exchange formats

▪ Open source/Community run time interfaces

▪ Tensor flow, TVM, ONNX Run time

TI Information – Selective Disclosure

Model deployment | PC to embedded device

Model compilation in TFlite runtime (Offline process)

▪ TFlite runtime as the top level inference API for user

▪ Offloading subgraphs to C7x/MMA for accelerated execution

▪ Multiple options to optimize accuracy and performance

Model Inferencing using TFlite runtime (Real-time)

▪ TFlite runtime as the top level inference API for user

applications

▪ Uses “artifacts” from compilation to run the code on C7x/MMA

Very similar flow for other run-times (ONNX, TVM)

TI Information – Selective Disclosure

Open Source Run-Time Compilation Details

▪ All the details so far are just to get you more comfortable with the model deployment process.

▪ TI did the work for you to jump start your application

▪ TI’s model zoon are already pre-compiled and ready to use

TI Information – Selective Disclosure

Model Compilation Options
Name Description Default values

platform "J7" "J7"

version TIDL version - open source runtimes supported from version 7.2 onwards (7,3)

tensor_bits Number of bits for TIDL tensor and weights - 8/16 8

debug_level 0 - no debug, 1 - rt debug prints, >=2 - increasing levels of debug and trace dump 0

max_num_subgraphs offload up to <num> tidl subgraphs 16

deny_list force disable offload of a particular operator to TIDL "" - Empty list

accuracy_level 0 - basic calibration, 1 - higher accuracy(advanced bias calibration), 9 - user defined [^3] 1

ti_internal_nc_flag internal use only -

advanced_options:calibration_frames Number of frames to be used for calibration - min 10 frames recommended 20

advanced_options:calibration_iterations Number of bias calibration iterations 50

advanced_options:output_feature_16bit_names_list
List of names of the layers (comma separated string) as in the original model whose feature/activation

output user wants to be in 16 bit
""

advanced_options:params_16bit_names_list
List of names of the output layers (separated by comma or space or tab) as in the original model whose

parameters user wants to be in 16 bit [^1] [^5]
""

advanced_options:quantization_scale_type 0 for non-power-of-2, 1 for power-of-2 0

advanced_options:high_resolution_optimization 0 for disable, 1 for enable 0

advanced_options:pre_batchnorm_fold Fold batchnorm layer into following convolution layer, 0 for disable, 1 for enable 1

▪ All these options can be adjusted directly in Python or C- APIs

▪ We will look at couple of examples

TI Information – Selective Disclosure

Hello world | advanced calibration

Confidence % now is higher!

▪ Typically, you run this on large number of inputs to estimate accuracy.

▪ What is causing this? Quantization effects

▪ More calibration iterations minimizes the quantization error

Compile options: high_accuracy and increase calibration iterations

(In python example) Just 1 field to change

TI Information – Selective Disclosure

Model Compilation | Quantization

▪ Floating-point inference are not cost and power-efficient so we need to quantize the model to Fixed-point

▪ Two options

Model translation +

Weights quantization +

Load features range

TIDL

Inference

Model

translation +

Weights

quantization

Floating

point

model

Fixed

point

model

TIDL

Inference

Features

range

calibration

Fixed

point

model

with

range

Sample Inputs

TIDL Compile time Quantization

TIDL Compile

Floating

point

model

Fixed

point

model

with

range

1. Post training Quantization

2. Quantization aware training
Best accuracy

Effortless fixed-point inference

Standard

Training

Framework

Standard

Training

Framework

+ jacinto ai

devkit

▪ Near lossless accuracy

▪ Just a few lines of code changes

▪ Jacinto_ai_dev_kit

▪ 8-bit, 16-bit or mixed (layer-level)

▪ Histogram based activation range

▪ Adv parameter calibration

https://git.ti.com/cgit/jacinto-ai/pytorch-jacinto-ai-devkit/about/docs/Quantization.md

TI Information – Selective Disclosure

Model Compilation | Output files

• Compile output files

– 170_tidl_io_1.bin

– 170_tidl_net.bin

– allowedNode.txt

– tempDir

• 170_tidl_net

– bufinfolog.csv

– bufinfolog.txt

– perSiminfo.bin

• 170_tidl_io__LayerPerChannelMean.bin

• 170_tidl_io__stats_tool_out.bin

• 170_tidl_io_1.bin

• 170_tidl_net.bin

• 170_tidl_net.bin_netLog.txt

• 170_tidl_net.bin_paramDebug.csv

• 170_tidl_net.bin_layer_info.txt

• 170_tidl_net.bin.svg

• calib_raw_data_170.bin

Shows layer mapping

Total GMACs: 1.2371

The compilation step generates multiple output files to examine

the process

▪ It is recommended to see the log file to ensure all the layers are

mapped

▪ Assess the performance requirements

▪ Layer names

▪ Visualize graphs

▪ Review quantization effects

TI Information – Selective Disclosure

Model compilation Graphical Output

170_tidl_net.bin.svg

TI Information – Selective Disclosure

Model compilation Layer Mapping Output

170_tidl_net.bin_layer_info.txt

TI Information – Selective Disclosure

Debug Accuracy Differences | Weights Quantization statistic Analysis

▪ The import tool generates parameter quantization statistics.
– This information is saved as "*_paramDebug.csv" in the same location as output TIDL model files.

– This information calculated using the float weights and quantized weights

▪ The important information is mean and max of all the absolute float parameters and quantized numbers

– User can compare this file with 16-bit and 8-bit parameters

170_tidl_net.bin_paramDebug.csv

LayerId meanDifference maxDifference meanOrigFloat meanRelDifference orgmax quantizedMax orgAtmaxDiff quantizedAtMaxDiffmaxRelDifference Scale

1 0.000033 0.000118 1.970974 0.007077 3.882989 3.882871 0.018391 0.018367 0.130669 8438.85938

1 0.000041 0.000225 0.480229 0.103985 7.364561 7.364336 -0.001202 -0.001124 6.532568 4449.41699

2 0.000049 0.000178 2.181959 0.027657 5.836805 5.836627 0.014495 0.014428 0.46165 5614.02979

2 0.000059 0.000123 0.540566 1.037649 8.048687 8.048687 -0.000859 -0.000737 14.230615 4071.22315

16-bit

LayerId meanDifference maxDifference meanOrigFloat meanRelDifference orgmax quantizedMax orgAtmaxDiff quantizedAtMaxDiffmaxRelDifference Scale

1 0.009079 0.030883 1.983426 1.058606 3.952945 3.922062 0.107803 0.092647 14.058746 32.380924

1 0.01045 0.057536 0.480229 3.202275 7.364561 7.307025 0.145063 0.172607 18.987646 17.380535

2 0.01229 0.045691 2.266234 1.13127 5.848518 5.802827 -0.292469 -0.274149 6.263741 21.885885

2 0.011207 0.030509 0.540566 4.234289 8.048687 8.048687 0.160545 0.188641 17.500296 15.903215

8-bit

TI Information – Selective Disclosure

Change compile options to 16-bit tensor bits

(In python example)

Hello world | 16-bit quantization

▪ Obviously, now the confidence % is much higher . But, it runs slower compared to 8-bit mode (169.95 fps vs 300 fps)

▪ In general, 8-bit computation is good enough for most practical applications.

▪ It’s also very easy to select which layers can be 8-bit and which can be 16-bit

TI Information – Selective Disclosure

Change compile options to 16-bit tensor

bits only for 1st layer

(In python example)

Hello world | Mixed 8-bit and 16-bit quantization

▪ Obviously, now the confidence % is slightly lower. But, it runs faster compared to 8-bit mode (273.13 fps vs 169.95 fps)

▪ It’s very easy to select which layers can be 8-bit and which can be 16-bit

▪ And, all this is done in Python with just a few lines of code and examining the model compilation output files

TI Information – Selective Disclosure

Parameters affecting Performance

• Convention DL engines

– Process CNN’s on a per layer basis

– Results in a large DDR footprint (MB/Frame)

– More DDR interfaces required to support DDR

bandwidth consumption

• Super-Tiling is a TI proprietary technology

– Optimizes memory management

– Minimizes the number of DDR transactions

– Enables SoC’s with fewer DDR interfaces resulting

in higher performance and better energy efficiency

Enabled by setting

advanced_options:high_resolution_optimization

Recommended for medium and large sized networks

TI Information – Selective Disclosure

Deep learnig model deployment | Supported Layers

1. Convolution Layer

2. Spatial Pooling Layer

• Average and Max Pooling

3. Global Pooling Layer

• Average and Max Pooling

4. Element Wise Layer

• Add, Product and Max

5. Inner-Product (FC/Dense/Matmul) Layer

6. Soft-Max Layer

7. Bias Add Layer

8. Concatenate layer

9. Scale Layer

10. Batch Normalization layer

11. Re-size Layer

• Bi-leaner/Nearest Neighbor Up-sample

12. Arg-max layer

13. ReLU Layer

14. RelU6 layer

15. PReLU (One Parameter per channel)

16. Slice layer

17. Crop layer

18. Flatten layer

19. Shuffle Channel Layer

20. Detection output Layer (SSD - Post Processing As
defined in caffe-Jacinto and TF Object detection API)

21. Deconvolution/Transpose convolution

22. Custom/ User Defined Layer (Call Back)

Note : Please refer to TIDL users Guide for up to date information
https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/07_03_00_07/exports/docs/tidl_j7_02_00_00_07/ti_dl/docs/user_guide_html/index.html

https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/07_03_00_07/exports/docs/tidl_j7_02_00_00_07/ti_dl/docs/user_guide_html/index.html

TI Information – Selective Disclosure

Model Compilation Advanced scenarios

What if a layer is not supported?

TI Information – Selective Disclosure

MobileNetV3 | Evolution

• This is a popular network from GoogleAI/GoogleBrain

– The Table1 shows various layers in this network

• Mobilenet v1: Introduced depth-wise plus point-wise convolution reducing the

computation cost significantly [Used this in Hello World example]

• Mobilenet v2: Added residual connections for faster training and better accuracy.

[similar idea as in Resnet]

• Mobilenet v3: Add a few more tricks including:

– Redesign of expensive layers

– SE (Squeeze-and-Excitation): to capture interactions between the channels

– HS (HardSwish, a non-linear activation function) in the deeper layers vs ReLU

• HardSwish and SE are not supported by TIDL

https://arxiv.org/pdf/1905.02244.pdf

It is very easy to make small changes to deploy this model

https://arxiv.org/pdf/1905.02244.pdf

TI Information – Selective Disclosure

MobileNetV3 | Model analysis and changes

1. Red box: HardSwish is replaced by ReLU

2. Purple box: SE has been removed

▪ MobileNetV3 is implemented in torchvision

▪ https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenetv3.py

▪ Use Netron app to visualize this

▪ https://www.electronjs.org/apps/netron

https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenetv3.py
https://www.electronjs.org/apps/netron

TI Information – Selective Disclosure

Simple Model changes | MobileNetV3 Lite

▪ The pictures show the changes that

was done to:

– Replace HardSwish by ReLU

– Remove SE

▪ Source code is also available as a

reference

34

TI Information – Selective Disclosure

Accuracy Check | After MobileNetV3 changes

▪ Training Scripts for ImageNet Classification are given in

torchvision

– https://github.com/pytorch/vision/tree/master/references/classi

fication

– By default, we can train the model mobilenet_v3_large using

those scripts.

• The resulting accuracy is obtained in this page:

https://pytorch.org/vision/stable/models.html

▪ Now, redo using the modified model

– The accuracy drop due to lite version is only 2%

– This is a reasonable accuracy hit to take since the lite version

will run optimally on the embedded devices

Model Name ImageNet Accuracy %

(Top-1)

mobilenet_v3_large 74.042

mobilenet_v3_lite_large

(Compiled)

72.122

The model is compiled, optimized and ready to be deployed!

Similarly, we have 100+ models to choose

https://github.com/pytorch/vision/tree/master/references/classification
https://pytorch.org/vision/stable/models.html

TI Information – Selective Disclosure

Model Zoo Get to market faster

Performance and Accuracy Results

▪ All the details so far are just to get you more comfortable with the model deployment process.

▪ For your application, you typically do not need to experiment with this a lot

▪ TI did the work for you to jump start your application

TI Information – Selective Disclosure

TI model zoo | Jump start your AI development

▪ Deep learning community is pretty extensive. It is common practice to:
– Use architectures of networks published in literature

– Use open-source implementations

• Popular runtimes; Tensorflow, ONNX and TVM

– Use pretrained models and fine-tune on your datasets (Transfer Learning)

▪ How TI is making it easy?
– Pre-compiled models (100+ now, continuously adding)

– Provide all the scripts to benchmark under top popular runtimes

– Provide the scripts to do transfer learning

– Documentation: link git clone/pull URLs: link

In most cases, you can pick a model that compiles without changes.

Let us know if any specific model is of interest

http://git.ti.com/cgit/jacinto-ai/jacinto-ai-modelzoo/about/
https://git.ti.com/cgit/jacinto-ai/jacinto-ai-modelzoo/

TI Information – Selective Disclosure

Classification | Accuracy

▪ ImageNet Database(ILSVRC-2012)

– 1000 Classes (zebras, elephant truck,…)

– 14,000,000 labelled Images

▪ Classification accuracy

– Top 1 (most popular)

– Top 5 (one of the top 5 is correct)

▪ You can run this today on EdgeAI

Cloud tool

Classification performance of MobileNetV1 on sample ImageNet pictures

https://dev.ti.com/edgeaisession/

https://dev.ti.com/edgeaisession/

TI Information – Selective Disclosure

Classification | Performance

▪ Model Selection Tool enables quick

comparison between CNN accuracy vs fps

▪ Obtain FPS and DDR Bandwidth

utilization!

TI Information – Selective Disclosure

Object Detection | Accuracy
▪ OD networks output:

– Bounding Boxes

– Class: (Car, Sign…)

▪ Bounding Box Performance:

Intersection over Union (IOU)

IOU=
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

IOU > 0.5 average

IOU > 0.7 good

IOU > 0.9 excellent

▪ Main Data set is the MS COCO dataset

▪ True Positive (TP): Object Identified and IOU > IOU Threshold

▪ False Positive(FP): Object Identified and IOU < IOU Threshold

▪ False Negative(FN): Object missed

▪ Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
; Recall=

𝑇𝑃

𝑇𝑃+𝐹𝑁

▪ mean Average Precision (mAP 0.5:0.95)

– For IOU thresholds 0.5:0.95

– Compute Precision/ Recall

mAP is area under the Precision/Recall Curve

TI Information – Selective Disclosure

Object Detection | Types of Networks

Two Stage Networks One Stage Networks

TI Information – Selective Disclosure

Object Detection | Accuracy Metrics

Example: Yolo5m6-ti-lite (512x512)

MAP(50-95 Int8): 40

FPS = (1000/15ms)~ 66fps

TI Information – Selective Disclosure

Semantic Segmentation | Accuracy

• Label every pixel with a category label

• Important for

– Drivable space estimation and occupancy grid

– Assist object detection

• Feature extractor networks

– MobileNets, Resnets, Regnets

• True Positive (TP) : Number of correctly classified pixel

• False Positive (FP) : Number of pixels of class Y

incorrectly assigned to class X (ground truth)

• False Negative (FN): The number of pixels of class X

(ground truth) incorrectly assigned to class Y

IOUClass=
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁

• mean IOU is average IOU across classes

TI Information – Selective Disclosure

Semantic Segmentation | Performance

• FPS and DDR BW utilization

TI Information – Selective Disclosure

Model deployment Metrics | Summary

1. Accuracy
– Different metrics for different tasks

– Classification Networks : Top 1 or Top 5 metric

– Object Detection Networks: mean Average Precision (mAP)

– Semantic Segmentation Networks: mean Intersection over Union (mIOU)

2. Frames Per Second / Latency in ms

– Higher FPS /Lower latency is better

3. DDR BW utilization
– Lower DDR BW/ Frame utilization is better

All this can be evaluated in the Cloud Evaluation Tool – Now!

TI Information – Selective Disclosure

Cloud Development to Your own hardware

Low-cost development tool from TI

TI Information – Selective Disclosure

Edge AI Starter Kit | Jacinto™ TDA4VM processor

Part number: SK-AI-TDA4VM | Price: $249 | Order: Now

8TOPS AI

accelerated

processor

3x USB 3.0

Type A

Ethernet

port (1Gb)

Hardware-compatible

Raspberry Pi HAT

header

High speed

CSI-2 ports

2x PCIe

4k60 DP

1080HDMI

Multiple boot options

including SD card

Fast out-of-box Edge AI demo:

1. Insert programmed SD card*

2. Plug-in all peripherals

3. Run demo in under an hour!

* Follow instructions in Edge AI Devkit to program SD card

Quick start guide: Download | Processor SDK: Download

1x USB 3.0

Type C

https://www.ti.com/tool/SK-TDA4VM
https://software-dl.ti.com/jacinto7/esd/edgeai-devkit/latest/exports/docs/getting_started.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-sk-tda4vm/08_04_00/exports/docs/getting_started.html
https://www.ti.com/tool/download/PROCESSOR-SDK-LINUX-SK-TDA4VM

TI Information – Selective Disclosure

Beaglebone AI-64 | Jacinto™ TDA4VM processor

Price: $187.5 | https://beagleboard.org/

https://beagleboard.org/

TI Information – Selective Disclosure

Summary | Deep Learning Deployment

Training is done once or a few times : Off-line operation

TI’s Jacinto TDA4 EdgeAI Embedded Solutions Offer:

✓Efficiency: Most efficient (FPS/TOPS, FPS/Watt) real-time inferencing in Edge Devices

✓Ready to use: An extensive library of compiled models that are production redy

✓Easy to use: Open-source runtime enabling simple Python and C based inferencing

Inference happens during the life of the product : Real-time operation

Deep learning has two parts: Training and Inference

TI Information – Selective Disclosure

Call to action

❑ Recommendations for further development
▪ Compile different models with different options and see the effect on the inference results

▪ Review the published results with your own results

▪ Pick the models that would be relevant for your use case.

❑ Reimagine “what’s possible” for your application with embedded edge AI

❑ Contact TI for support (e2e.ti.com)
▪ Please also let us know any specific topics you want us to cover in the future webinars

Code examples used in the webinar are below.
https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1014084/tda4vm-jacinto-ti-edge-ai-monthly-webinar-jul-2021-embedded-deep-learning-deployment-demystified

▪ Cloud Tool: https://dev.ti.com/edgeai

▪ Product Folder: https://www.ti.com/product/TDA4VM

▪ TDA4 EVM: http://www.ti.com/tool/TDA4VMXEVM

▪ TDA4 SK EVM : https://www.ti.com/tool/SK-TDA4VM

https://e2e.ti.com/support/processors-group/

