

TI Precision Labs - Current sense amplifiers

Presented by Kyle Stone
Prepared by Javier Contreras

Slew rate and bandwidth

• In the **electrical characteristics** table:

FREQUENCY RESPONSE							
	Bandwidth	A1 versions, C _{OUT} = 500 pF	550	kHz			
BW		A2 versions, C _{OUT} = 500 pF	440				
		A3 versions, C _{OUT} = 500 pF	400				
SR	Slew rate		4	V/µs			

• In the **typical characteristics** curves:

Bandwidth

• In the **electrical characteristics** table:

BW	Bandwidth	A2 versions, C _{OUT} = 500 pF	440	kHz
		A3 versions, C _{OUT} = 500 pF	400	

• In the typical characteristics curves:

Bandwidth simulation

Bandwidth small signal vs. large signal

Graphical estimation ≈ 0.05 V/200 ns →0.25 V/µS

Max Slew Rate of a sine wave = $2\pi \cdot F \cdot A$

F= Frequency

A = Amplitude of sine wave

A = 2.5 V F = 400 kHz Max slew rate \approx 6.28 V/ μ s

Graphical estimation ≈ 0.5 V/80 ns →6.25 V/µS

Bandwidth small signal transient simulation

Bandwidth large signal transient simulation

Slew rate

A x: 5.4u y: 500m

B x: 7.02u y: 4.5

A-B x: -1.62u y: -4

Input Step 0.1 mV to 9.5 mV

Slew rate from simulation 4 V/1.62 μ s \rightarrow 2.47 V/ μ s

Slew rate notes

- Slew rate measured in linear range of current sense amplifiers (CSA)
- Slew rate is not defined in non-linear range
- A device with a 0-V input could be considered having a negative input due to VOS for a unidirectional CSA
- Coming out of saturation requires time. Below is an example statement from the INA293:

8.2.2.1 Overload Recovery With Negative V_{SENSE}

The INA293 is a unidirectional current sense amplifier that is meant to operate with a positive differential input voltage (V_{SENSE}). If negative V_{SENSE} is applied, the device is placed in an overload condition and requires time to recover once V_{SENSE} returns positive. The required overload recovery time increases with more negative V_{SENSE} .

Normally modeled behavior

- Linear range of the device
- Small signal AC bandwidth
- Slew rate in linear range

Typical non-modeled behavior

- Outside of normal operating conditions.
- Overload recovery (non-linear)

To find more current sense amplifier technical resources and search products, visit ti.com/currentsense

© Copyright 2022 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com