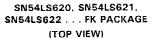
SN54LS620, SN54LS621, SN74LS620, SN74LS621, SN74LS623 OCTAL BUS TRANSCEIVERS SDLS185 D2537, AUGUST 1979-REVISED MARCH 1988

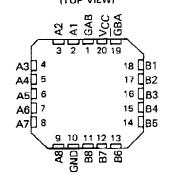
- Bidirectional Bus Transceivers in High-Density 20-Pin Packages
- Local Bus-Latch Capability
- Hysteresis at Bus Inputs Improves
 Noise Margins
- Choice of True or Inverting Logic
- Choice of 3-State or Open-Collector
 Outputs

DEVICE	OUTPUT	LOGIC
′LS620	3-State	Inverting
'LS621	Open-Collector	True
'LS623	3-State	True

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.


These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs $\{\overline{G}BA$ and $GAB\}$.


The enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives the 'LS620, 'LS621, and 'LS623 the capability to store data by simultaneous enabling of $\overline{G}BA$ and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the 'LS621 and 'LS623 devices or complementary for the 'LS620.

SN54LS620, SN54LS621,										
SN54LS622 J PACKAGE										
SN74LS620, SN74LS621,										
SN74LS623 DW OR N PACKAGE										
(TOP VIEW)										

•			,
GAB A1 A2 A3 A4 A5 A6 A7 A8 GND	1 2 3 4 5 6 7 8 9 10	20 19 18 17 16 15 14 13 12 11	VCC GBA B1 B2 B3 B4 B5 B6 B7 B8

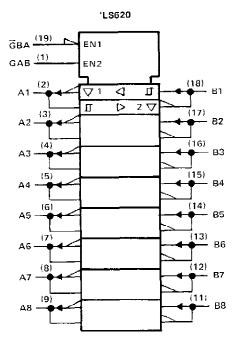
FUNCTION TABLE

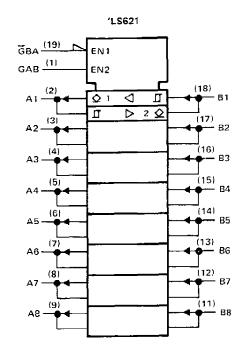
ENABLE	INPUTS	OPERATION						
ĞВА	GAB	LS620	'LS621, 'LS623					
L	L	B data to A bus	Bidata to A bus					
н	н	A data to B bus	A data to B bus					
н	L	Isolation	Isolation					
		B data to A bus,	B data to A bus,					
L	H	A data to B bus	A data to B bus					

H = high level, L = low level

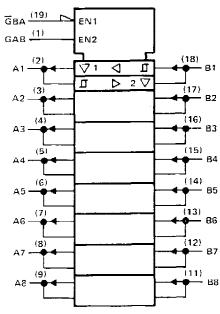
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage		7 V
Off-state output voltage		.5 V
Operating free-air temperature range: SN54LS	-55°C to 12⊻ –55°C to 12	5°C
SN74LS	'	0°C
Storage temperature range	~65°C to 15	0°C

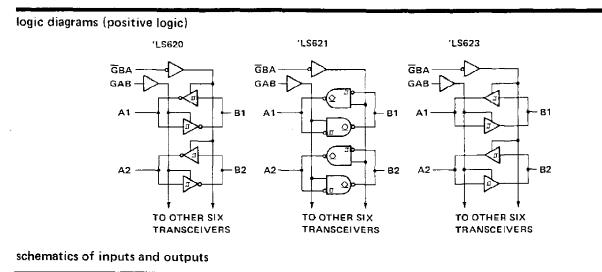

NOTE 1: Voltage values are with respect to network ground terminal.

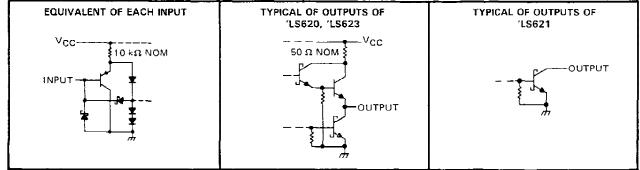

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54LS620, SN54LS621, SN74LS620, SN74LS621, SN74LS623 Octal bus transceivers


logic symbols[†]

.





¹ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

SN54LS620, SN54LS621, SN74LS620, SN74LS621, SN74LS623 Octal bus transceivers

*. .

SN54LS620, SN74LS620, SN74LS623 OCTAL BUS TRANSCEIVERS WITH 3 STATE OUTPUTS

recommended operating conditions

PARAMETER	SI	N54LS6	SI SI	UNIT			
	MIN	NOM	MAX	MIN	NOM	MAX	L
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	<u>v</u>
High-level output current, IOH			-12	_		-15	πА
Low-level output current, IOL			12			24	mA_
Operating free-air temperature, TA	-55		125	0		70	°⊂

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	SN54LS620			S	UNIT		
					MIN	TΥΡ‡	MAX	MIN	TYP‡	MAX]
√ін	High-level input voltage		-		2			2		_	_ v
VIL	Low-level input voltage						0.5			0.6	V
Vik	Input clamp voltage		$V_{CC} = MIN,$	l _l ≠ –18 mA			-1.5			-1.5	
	Hysteresis $(V_{T+} - V_{T_{-}})$ A or	B input	Vcc = MIN		0.1	0.4		0.2	0.4		V.
∨он		1 - 1	VCC = MIN,	^I OH = -3 mA	2.4	3.4		2.4	3.4		V
	High-level output voltage		ViH = 2 V, ViL = ViL max	I _{OH} = MAX	2			2			
Vol	Low-level output voltage		VCC = MIN,	1 ₀₁ = 12 mA		0.25	0.4		0.25	0.4	v
			V _{IH} = 2 V, V _{IL} = V _{IL} max	IOL = 24 mA					0.35	0.5	1
огн	Off-state output current,		VCC = MAX,	Gat 2 V,			20			20	μА
	high-level voltage applied		$V_0 = 2.7 V$	<u></u>							+
IDZL	Off-state output current, low-level voltage applied		V _{CC} = MAX, V _O = 0.4 V	Ğat2∨,			-400			400	μА
	Input current at	AprB		Vi = 5.5 V			0.1			0.1	mA
Ц	maximum input voltage	GBA or GAB	VCC = MAX,	V1 = 7 V			0.1			0.1	
ЧΗ	High-level input current		Vcc = MAX,	V1 = 2.7 V			20			20	Αų
11	Law-level input current		V _{CC} = MAX,	VI = 0.4 V			-0.4			-0.4	mA
los	Short-circuit output current §		VCC = MAX		-40		-225	-40		-225	mA
		Outputs high				48	70		48	70	
lcc	Total supply current	Outputs low	V _{CC} = MAX,	X, Outputs open		62	90		62	90	
	Outputs at 1					64	95		64	95	

[†] For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25^oC.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics at VCC = 5 V, TA = 25° C

	PARAMETER			TEST CONDITIONS	ʻLS620			s	¥74LS6	623	UNIT
		(INPUT)			MIN	TYP	MAX	MIN	ТҮР	MAX	
	Propagation delay time,	A	В			6	10		8	15	ns
^t PLH	low-to-high-level output	8	A	0 - 46 - 5		6	10		8	15	
	Propagation delay time,	A	В	С _L = 45 рF,		8	15		11	15	ns
^t ₽HL	high-to-low-level output	В	A	B 00 0		8	15		11	15	113
	Output enable time to low level	Ğва	A	$R_L = 667 \Omega$,		31	40		31	40	-
†PZL		GA8	В			31	40		31	40	ns
		GBA	A	See Note 2		23	40		26	40	
^t PZH	Output enable time to high level	GAB	В	i i		23	40		26	40	ns
		GBA	A			15	25	[.	15	25	
^t PLZ	Output disable time from low level	GAB	В	CL = 5 pF,		15	25		15	25	ns ns
		ĞВА	A	$R_{L} = 667 \Omega,$		15	25		15	25	
¹₽HZ	Output disable time from high level	GAB	В	See Note 2		15	25		15	25	-i ns

 t_{PLH} = Propagation delay time, low-to-high-level output

 $\label{eq:theta} \begin{array}{l} t_{\text{PHL}} = \text{Propagation delay time, low-to-now-level output} \\ t_{\text{PHL}} = \text{Propagation delay time, high-to-low-level output} \\ t_{\text{PZH}} = \text{Output enable time to high level} \end{array}$

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

t_{PZL} = Output enable time to low level t_{PHZ} = Output disable time from high level

tPLZ = Output disable time from low level

Texas 🖑 INSTRUMENTS POST OFFICE BOX 655012 + DALLAS, TEXAS 75265

SN54LS621, SN74LS621 OCTAL BUS TRANSCEIVERS WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

PARAMETER	s	SN54LS621					
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH			5.5			5.5	V
Low-level output current, IOL		·	12			24	mA
Operating free-air temperature, TA	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	TEST CONDITIONS [†]			121	s			
						TYP‡	MAX	X MIN TYP [‡] M	MAX	7	
VIH	High-level input voltage				2			2		_	V
VIL	Low-level input voltage						0.5	1		0.6	V
Vik	VIK Input clamp voltage		VCC = MIN,	I _I = −18 mA	1		1.5	1		-1.5	V
	Hysteresis (V _{T+} - V _T _) A	or B input	V _{CC} = MIN		0.1	0.4		0.2	0.4		V
10H	High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,				100			100	μА	
Vol	Low-level output voitage		V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 12 mA		0.25	0.4		0,25	0.4	v
	· •		VIL = VIL max	IOL = 24 mA					0.35	0.5	
1.	Input current at	A or B		5.5 V			0.1			0.1	
1 g	maximum input voltage	GAB or GBA	$V_{CC} = MAX,$	V1 = 7 V			0.1			0.1	- mA
Η	High-level input current		V _{CC} = MAX,	VI = 2.7 V			20			20	μA
ΊL	Low-level input current		Vcc = MAX,	V ₁ = 0.4 V			-0,4	<u> </u>		-0.4	mA
lcc	Total supply current	Outputs high	VCC = MAX,	Outputs open		48	70		48	70	mA
00	rotal supply current	Outputs low	YGU - MAA,	Outpots open		62	90		62	90	

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. ‡All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

switching characteristics, V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C

	DAGAMETER	FROM	то	TERT CONDITIONS					
	PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time,	A	В			17	25		
	low-to-high-level output	В	A			17	25	ns	
	Propagation delay time,	A	В			16	25		
¹ PHL	high-to-law-level output	В	A	$C_L = 45 \text{ pF},$		16	25	ńs	
	Output disable time	Ğва	A	$- R_{L} = 667 \Omega,$		23	40		
^t PLH	from low level	GAB	в	See Note 2		25	40	ns	
	Output enable time	GBA	A			34	50		
^t PHL	from high level	ghlevel GAB B			37	50	Π5		

 $t_{\text{PLH}} = Propagation delay time, low-to-high-level output$

tpHL = Propagation delay time, high-to-low-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

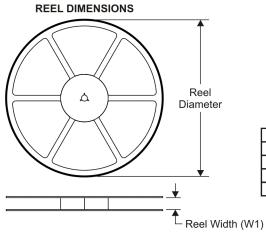
IMPORTANT NOTICE

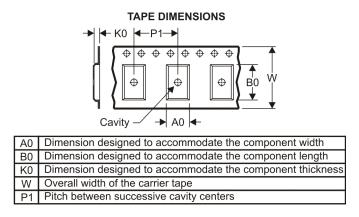
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

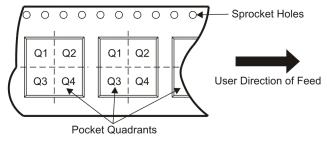
Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.


Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

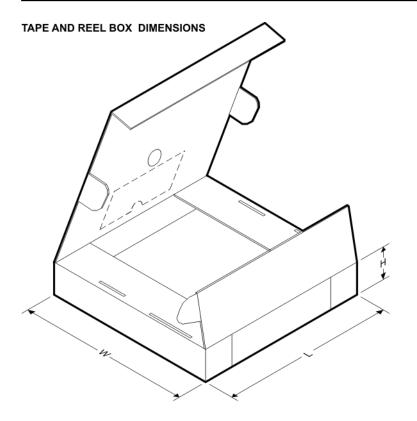

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.


Copyright © 1996, Texas Instruments Incorporated

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS623DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
SN74LS623NSR	SO	NS	20	2000	330.0	24.4	8.2	13.0	2.5	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

5-Aug-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS623DWR	SOIC	DW	20	2000	346.0	346.0	41.0
SN74LS623NSR	SO	NS	20	2000	346.0	346.0	41.0

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LS623N	ACTIVE	PDIP	Ν	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS623N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

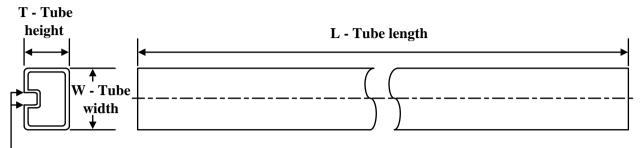
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LS623N	N	PDIP	20	20	506	13.97	11230	4.32

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated