

TLV61220A Low-Input Voltage Step-Up Converter in Thin SOT-23 Package

1 Features

- Up to 95% Efficiency at Typical Operating Conditions
- 5.5µA Quiescent Current
- Startup Into Load at 0.7-V Input Voltage
- Operating Input Voltage from 0.7V to 5.5V
- Pass-Through Function during Shutdown
- Minimum Switching Current 200mA
- Protections:
 - Output Overvoltage
 - Overtemperature
 - Input Undervoltage Lockout
- Adjustable Output Voltage from 1.8V to 5.5V
- Small 6-pin Thin SOT-23 Package

2 Applications

- Battery Powered Applications
- 1 to 3 Cell Alkaline, NiCd or NiMH
 - 1 Cell Li-Ion or Li-Primary
- Solar or Fuel Cell Powered Applications
- Consumer and Portable Medical Products
- Personal Care Products
- White or Status LEDs
- Smartphones

3 Description

The TLV61220A device provides a power-supply solution for products powered by either a singlecell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Li-polymer battery. Possible output currents depend on the input-to-output voltage ratio. The boost converter is based on a hysteretic controller topology using synchronous rectification to obtain maximum efficiency at minimal quiescent currents. The output voltage of the adjustable version can be programmed by an external resistor divider, or is set internally to a fixed output voltage. The converter can be switched off by a featured enable pin. While being switched off, battery drain is minimized. The device is packaged in a 6-pin thin SOT-23 package (DBV).

Package Information

PART NUMBER	PACKAGE (1)	BODY SIZE (NOM)		
TLV61220A	SOT (6)	2.90mm x 1.60mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

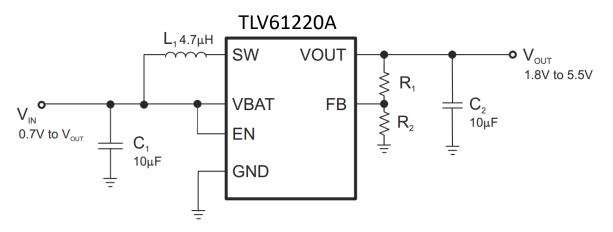


Figure 3-1. Typical application

Table of Contents

1	Features1
2	Applications1
3	Description1
4	Device Comparison3
5	Pin Configuration and Functions3
	Pin Functions3
6	Specifications4
	6.1 Absolute Maximum Ratings4
	6.2 ESD Ratings4
	6.3 Recommended Operating Conditions4
	6.4 Thermal Information4
	6.5 Electrical Characteristics5
	6.6 Typical Characteristics6
7	Parameter Measurement Information9
8	Detailed Description10
	8.1 Overview10
	8.2 Functional Block Diagram10
	8.3 Feature Description10

8.4 Device Functional Modes	.11
9 Application and Implementation	
9.1 Application Information	12
9.2 Typical Application	. 12
10 Power Supply Recommendations	.15
11 Layout	. 16
11.1 Layout Guidelines	16
11.2 Layout Example	
11.3 Thermal Considerations	
12 Device and Documentation Support	.17
12.1 Third-Party Products Disclaimer	. 17
12.2 Documentation Support	
12.3 Receiving Notification of Documentation Updates.	
12.4 Support Resources	
12.5 Trademarks	. 17
12.6 Electrostatic Discharge Caution	.17
12.7 Glossary	.17
13 Revision History	
-	

4 Device Comparison

T _A	OUTPUT VOLTAGE DC/DC	PACKAGE	PART NUMBER
–40°C to 85°C	Adjustable	6-Pin SOT-23	TLV61220ADBV

5 Pin Configuration and Functions

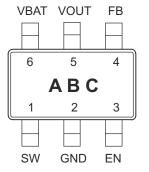


Figure 5-1. DBV Package 6 Pins Top View

Pin Functions

PIN		I/O	DESCRIPTION			
NAME	NO.	1/0	DESCRIPTION			
EN	3	I	Enable input (VBAT enabled, GND disabled)			
FB	4	I	Voltage feedback for programming the output voltage			
GND	2		IC ground connection for logic and power			
SW	1	I	Boost and rectifying switch input			
VBAT	6	I	Supply voltage			
VOUT	5	0	Boost converter output			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{IN}	Input voltage on VBAT, SW, VOUT, EN, FB	-0.3	7.5	V
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

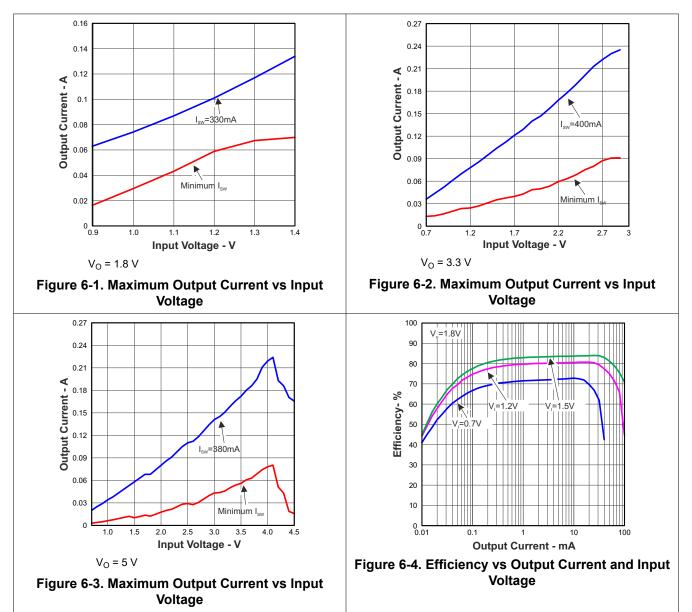
6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V _{IN}	Supply voltage at VIN	0.7		5.5	V
T _A	Operating free air temperature range	-40		85	°C
TJ	Operating virtual junction temperature range	-40		125	°C

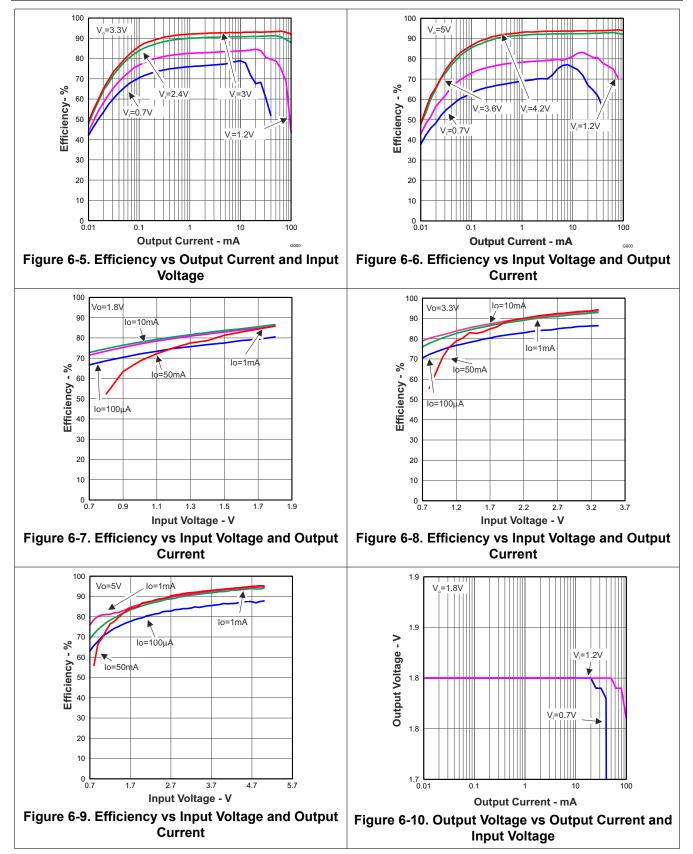
6.4 Thermal Information

		TLV61220A	
	THERMAL METRIC ⁽¹⁾	DBV	UNIT
		6 PINS	-
R _{θJA}	Junction-to-ambient thermal resistance	185.7	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	124.3	
R _{θJB}	Junction-to-board thermal resistance	31.3	°C/W
ΨJT	Junction-to-top characterization parameter	22.9	C/W
Ψ _{JB}	Junction-to-board characterization parameter	30.8	1
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A]

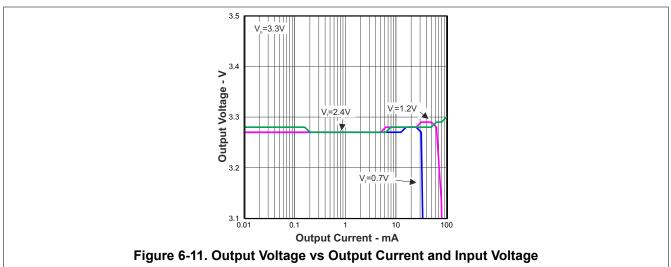
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.


6.5 Electrical Characteristics

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)


	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC/DC ST	AGE						
V _{IN}	Input voltage range			0.7		5.5	V
V _{IN}	Minimum input voltage	e at startup	R _{Load} ≥ 150Ω			0.7	V
V _{OUT}	TLV61220A output voltage range		V _{IN} < V _{OUT}	1.8		5.5	V
V _{FB}	TLV61220A feedback voltage			483	500	513	mV
I _{LH}	Inductor current ripple	;			200		mA
			V _{OUT} = 3.3V, V _{IN} = 1.2V, T _A = 25 °C	220	400		mA
I _{SW}	switch current limit		V _{OUT} = 3.3 V, T _A = -40°C to 85 °C	180	400		mA
			V _{OUT} = 3.3 V, T _A = 0°C to 85 °C	200	400		mA
	Rectifying switch on r	esistance,	V _{OUT} = 3.3V		1000		mΩ
	HSD		V _{OUT} = 5 V		700		mΩ
R _{DS(on)}			V _{OUT} = 3.3V		600		mΩ
	Main switch on resista	ance, LSD	V _{OUT} = 5V		550		mΩ
	Line regulation		V _{IN} < V _{OUT}		0.5%		
	Load regulation		V _{IN} < V _{OUT}		0.5%		
	Quiescent VIN	l	– I _O = 0mA, V _{EN} = V _{IN} = 1.2V, V _{OUT} = 3.3V		0.5	0.9	μA
lq	current V _{OU}	UT			5	7.5	μA
I _{SD}	Shutdown current	UT	V _{EN} = 0V, V _{IN} =SW= 1.5V, T _A = 25°C		0.2	7.5	μA
I _{SD}	Shutdown current	UT	V _{EN} = 0 V, V _{IN} =SW= 3V, T _A = 25°C		0.2	7.5	μA
1	Leakage current into	VOUT	V _{EN} = 0V, V _{IN} = 1.2V, V _{OUT} = 3.3V		1		μA
I _{LKG}	Leakage current into	SW	$V_{EN} = 0V, V_{IN} = 1.2V, V_{SW} = 1.2V, V_{OUT} \ge V_{IN}$		0.01	0.2	μA
I _{FB}	TLV61220A Feedback	< input	V _{FB} = 0.5V		0.01		μA
I _{EN}	EN input current		Clamped on GND or V _{IN} (V _{IN} < 1.5V)		0.005	0.1	μA
CONTROL	STAGE						
V _{IL}	EN input low voltage		V _{IN} ≤ 1.5V			0.2 × V _{IN}	V
V _{IH}	EN input high voltage		V _{IN} ≤ 1.5V	0.8 × V _{IN}			V
V _{IL}	EN input low voltage		5V > V _{IN} > 1.5V			0.4	V
V _{IH}	EN input high voltage		5V > V _{IN} > 1.5V	1.2			V
V _{UVLO}	Undervoltage lockout for turn off	threshold	V _{IN} decreasing		0.5	0.7	V
	Overvoltage protection threshold			5.5		7.5	V
	Overtemperature protection				140		°C
	Overtemperature hysteresis				20		°C

6.6 Typical Characteristics



TLV61220A SLVSIA2 – NOVEMBER 2024

7 Parameter Measurement Information

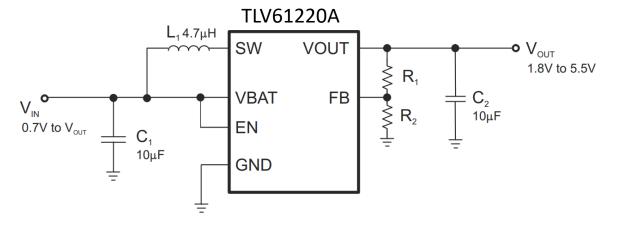
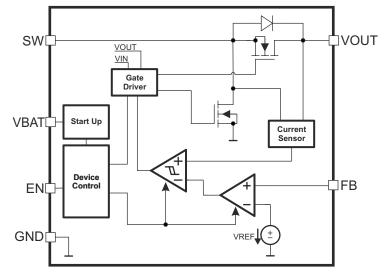


Figure 7-1. Parameter Measurement Schematic



8 Detailed Description

8.1 Overview

The TLV61220A is a high performance, highly efficient boost converter. To achieve high efficiency the power stage is realized as a synchronous boost topology. For the power switching two actively controlled low $R_{DS(on)}$ power MOSFETs are implemented.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Controller Circuit

The device is controlled by a hysteretic current mode controller. This controller regulates the output voltage by keeping the inductor ripple current constant in the range of 200 mA and adjusting the offset of this inductor current depending on the output load. In case the required average input current is lower than the average inductor current defined by this constant ripple the inductor current gets discontinuous to keep the efficiency high at low load conditions.

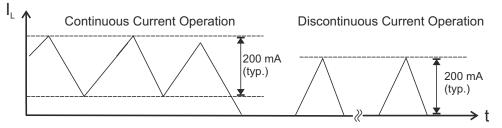


Figure 8-1. Hysteretic Current Operation

The output voltage V_{OUT} is monitored via the feedback network which is connected to the voltage error amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage reference and adjusts the required offset of the inductor current accordingly. An external resistor divider needs to be connected.

The self oscillating hysteretic current mode architecture is inherently stable and allows fast response to load variations. It also allows using inductors and capacitors over a wide value range.

8.3.1.1 Startup

After the EN pin is tied high, the device starts to operate. In case the input voltage is not high enough to supply the control circuit properly a startup oscillator starts to operate the switches. During this phase the switching

frequency is controlled by the oscillator and the maximum switch current is limited. As soon as the device has built up the output voltage to about 1.8 V, high enough for supplying the control circuit, the device switches to its normal hysteretic current mode operation. The startup time depends on input voltage and load current.

8.3.1.2 Operation at Output Overload

If in normal boost operation the inductor current reaches the internal switch current limit threshold the main switch is turned off to stop further increase of the input current.

In this case the output voltage will decrease since the device can not provide sufficient power to maintain the set output voltage.

If the output voltage drops below the input voltage the backgate diode of the rectifying switch gets forward biased and current starts flow through it. This diode cannot be turned off, so the current finally is only limited by the remaining DC resistances. As soon as the overload condition is removed, the converter resumes providing the set output voltage.

8.3.1.3 Undervoltage Lockout

An implemented undervoltage lockout function stops the operation of the converter if the input voltage drops below the typical undervoltage lockout threshold. This function is implemented in order to prevent malfunctioning of the converter.

8.3.1.4 Overvoltage Protection

If, for any reason, the output voltage is not fed back properly to the input of the voltage amplifier, control of the output voltage will not work anymore. Therefore an overvoltage protection is implemented to avoid the output voltage exceeding critical values for the device and possibly for the system it is supplying. For this protection the TLV61220A output voltage is also monitored internally. In case it reaches the internally programmed threshold of 6.5 V typically the voltage amplifier regulates the output voltage to this value.

If the TLV61220A is used to drive LEDs, this feature protects the circuit if the LED fails.

8.3.1.5 Overtemperature Protection

The device has a built-in temperature sensor which monitors the internal IC junction temperature. If the temperature exceeds the programmed threshold (see electrical characteristics table), the device stops operating. As soon as the IC temperature has decreased below the programmed threshold, it starts operating again. To prevent unstable operation close to the region of overtemperature threshold, a built-in hysteresis is implemented.

8.4 Device Functional Modes

8.4.1 Device Enable and Shutdown Mode

The device is enabled when EN is set high and shut down when EN is low. During shutdown, the converter stops switching and all internal control circuitry is turned off. In this case the input voltage is connected to the output through the back-gate diode of the rectifying MOSFET. This means that there always will be voltage at the output which can be as high as the input voltage or lower depending on the load.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TLV61220A is intended for systems powered by a single cell battery to up to three Alkaline, NiCd or NiMH cells with a typical terminal voltage between 0.7 V and 5.5 V. It can also be used in systems powered by one-cell Li-lon or Li-Polymer batteries with a typical voltage between 2.5 V and 4.2 V. Additionally, any other voltage source with a typical output voltage between 0.7 V and 5.5 V can be used with the TLV61220A.

9.2 Typical Application

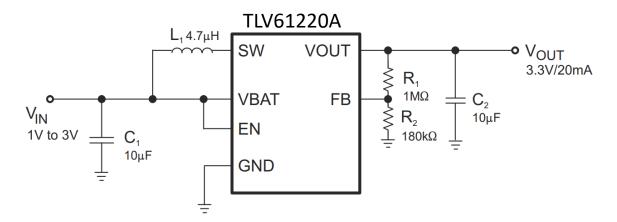


Figure 9-1. Typical Application Circuit for Adjustable Output Voltage Option

9.2.1 Design Requirements

In this example, TLV61220A is used to design a 3.3V power supply with up to 50mA output current capability. The TLV61220A can be powered by a single-cell battery to up to three Alkaline, NiCd or NiMH cells with a typical terminal voltage between 0.7V and 5.5V. It can also be used in systems powered by one-cell Li-lon or Li-Polymer batteries with a typical voltage between 2.5V and 4.2V. In this example, the input voltage range is from 2V to 3V for one-cell coin cell battery input design.

Requirements					
PARAMETERS	VALUES				
Input Voltage	2V to 3V				
Output Voltage	3.3V				
Output Current	50mA				

Table 9-1. TLV61220A 3.3 V Output Design	
Requirements	

9.2.2 Detailed Design Procedure

COMPONENT REFERENCE	PART NUMBER	MANUFACTURER	VALUE
C ₁	GRM188R60J106ME84D	Murata	10µF, 6.3V. X5R Ceramic
C ₂	GRM188R60J106ME84D	Murata	10µF, 6.3V. X5R Ceramic
L ₁	1269AS-H-4ZR7N	Toko	4.7µH
R ₁ , R ₂			R_1 = 1M Ω , R_2 = Values depending on the programmed output voltage

Table 9-2. List of Components

9.2.2.1 Adjustable Output Voltage Version

An external resistor divider is used to adjust the output voltage. The resistor divider needs to be connected between VOUT, FB and GND as shown in Figure 9-1. When the output voltage is regulated properly, the typical voltage value at the FB pin is 500 mV. The maximum recommended value for the output voltage is 5.5 V. The current through the resistive divider should be about 100 times greater than the current into the FB pin. The typical current into the FB pin is 0.01 μ A, and the voltage across the resistor between FB and GND, R₂, is typically 500 mV. Based on those two values, the recommended value for R₂ should be lower than 500 k Ω , in order to set the divider current to 1 μ A or higher. The value of the resistor connected between VOUT and FB, R₁, depending on the needed output voltage (V_{OUT}), can be calculated using Equation 1:

$$R_1 = R_2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right)$$
(1)

As an example, if an output voltage of 3.3 V is needed, a 1-M Ω resistor is calculated for R₁ when for R₂ a 180-k Ω has been selected.

9.2.2.2 Inductor Selection

To make sure that the TLV61220A can operate, a suitable inductor must be connected between pin VBAT and pin SW. Inductor values of 4.7 μ H show good performance over the whole input and output voltage range .

Choosing other inductance values affects the switching frequency *f* proportional to 1/L as shown in Equation 2.

$$L = \frac{1}{f \times 200 \text{ mA}} \times \frac{V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}})}{V_{\text{OUT}}}$$
(2)

Choosing inductor values higher than 4.7 µH can improve efficiency due to reduced switching frequency and, therefore, with reduced switching losses. Using inductor values below 2.2 µH is not recommended.

Having selected an inductance value, the peak current for the inductor in steady state operation can be calculated. Equation 3 gives the peak current estimate.

$$I_{L,MAX} = \begin{cases} \frac{V_{OUT} \times I_{OUT}}{0.8 \times V_{IN}} + 100 \text{ mA}; & \text{continous current operation} \\ 200 \text{ mA}; & \text{discontinuous current operation} \end{cases}$$
(3)

For selecting the inductor this would be the suitable value for the current rating. It also needs to be taken into account that load transients and error conditions may cause higher inductor currents.

Equation 4 helps to estimate whether the device will work in continuous or discontinuous operation depending on the operating points. As long as the inequation is true, continuous operation is typically established. If the inequation becomes false, discontinuous operation is typically established.

Copyright © 2024 Texas Instruments Incorporated

(4)

$$\frac{V_{\text{out}} \times I_{\text{out}}}{V_{\text{IN}}} > 0.8 \times 100 \text{ mA}$$

The following inductor series from different suppliers have been used with TLV61220A converters:

Table 3-3. List of muuctors			
VENDOR	INDUCTOR SERIES		
Toko	DFE252010C		
Coilcraft	EPL3015		
Colicial	EPL2010		
Murata	LQH3NP		
Taiyo Yuden	NR3015		
Wurth Elektronik	WE-TPC Typ S		

Table 9-3. List of Inductors

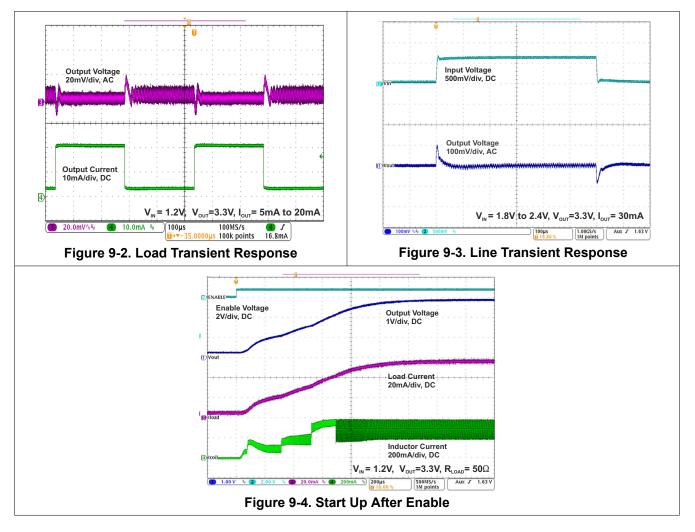
9.2.2.3 Capacitor Selection

9.2.2.3.1 Input Capacitor

At least a 10-µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VBAT and GND pins of the IC is recommended.

9.2.2.3.2 Output Capacitor

For the output capacitor C_2 , it is recommended to use small ceramic capacitors placed as close as possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can not be placed close to the IC, the use of a small ceramic capacitor with an capacitance value of around 2.2µF in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.


A minimum capacitance value of 4.7μ F should be used, 10 μ F are recommended. If the inductor value exceeds 4.7μ H, the value of the output capacitance value needs to be half the inductance value or higher for stability reasons, see Equation 5.

$$C_2 \ge \frac{L}{2} \times \frac{\mu F}{\mu H}$$
(5)

The TLV61220A is not sensitive to the ESR in terms of stability. Using low ESR capacitors, such as ceramic capacitors, is recommended anyway to minimize output voltage ripple. If heavy load changes are expected, the output capacitor value should be increased to avoid output voltage drops during fast load transients.

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be single-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Lipolymer battery.

The input supply should be well regulated with the rating of TLV61220A. If the input supply is located more than a few inches from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 μ F is a typical choice.

11 Layout

11.1 Layout Guidelines

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.

The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current. Assure that the ground traces are connected close to the device GND pin.

11.2 Layout Example

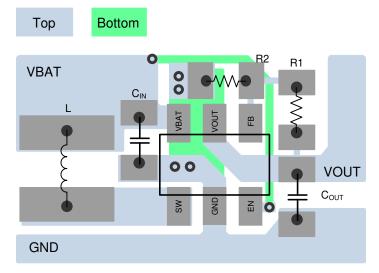


Figure 11-1. PCB Layout Recommendation

11.3 Thermal Considerations

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are listed below:

- Improving the power-dissipation capability of the PCB design.
- Improving the thermal coupling of the component to the PCB.
- Introducing airflow into the system.

For more details on how to use the thermal parameters in the dissipation ratings table please check the *Thermal Characteristics Application Note* and the *IC Package Thermal Metrics Application Note*.

12 Device and Documentation Support

12.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

- Texas Instruments, Thermal Characteristics Application Note
- Texas Instruments, IC Package Thermal Metrics Application Note

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
November 2024	*	Initial Release

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated