
Technical White Paper
The C29 CPU – Unrivaled Real-Time Performance with
Optimized Architecture on C2000™ MCUs

Saya Goud Langadi, Chen-Yu Chang, Sira Rao

ABSTRACT

To meet emerging design trends for higher power density and complex control techniques in real-time
applications, engineers need high-performance MCUs with more flash memory, larger computational capabilities,
and higher levels of integrated functionality. Requirements are enabled through innovations in CPU architecture,
such as the C29 CPU in TI C2000™ MCUs that has 64-bit architecture and advanced cybersecurity
components, such as the safety and security unit (SSU). The SSU allows context isolation among threads
running within the same CPU, enabling run-time security and freedom from interference (FFI), a feature typically
found in microprocessors. The C29 core builds on TI’s market leading C28 core, delivering higher performance
for general purpose and digital signal processing.

This white paper discusses the C29 core architecture, benefits of the SSU, and describes several performance
benchmarks comparing MCUs with C29 cores to MCUs with other CPU core architectures. The paper describes
the benefits of the parallel C29 architecture, and the performance entitlement achieved with the C29 compiler.

Table of Contents
1 Introduction to Real-Time Control...3
2 C29 CPU and Key Features..4

2.1 Parallel Architecture and Compiler Entitlement..6
3 C29 Performance Benchmarks..7

3.1 Signal Chain Benchmark with ACI Motor Control.. 7
3.2 Real-time Control and DSP Performance.. 9
3.3 General Purpose Processing (GPP) Performance...17
3.4 Model-Based Design Benchmarks...21
3.5 Application Benchmarks...21
3.6 Flash Memory Efficiency.. 23
3.7 Code-size Efficiency...23

4 Summary... 24
5 References.. 24

List of Figures
Figure 1-1. Real-Time Signal Chain Components... 3
Figure 2-1. C29 Architecture Block Diagram... 4
Figure 3-1. Real-Time Control Loop.. 8
Figure 3-2. C29 versus C28 Real-time Control and DSP Performance...9
Figure 3-3. C29 versus M7 Real-time Control and DSP Performance.. 10
Figure 3-4. C29 versus Proprietary CPU A Real-time control and DSP Performance.. 10
Figure 3-5. Normal Implementation of SVGEN..14
Figure 3-6. Optimized Implementation of SVGEN on C29.. 14
Figure 3-7. Software Pipelining in CFFT - Handwritten Assembly...15
Figure 3-8. Software Pipelining in FIR - Compiler Generated... 16
Figure 3-9. Customer Control and Math Benchmarks... 16
Figure 3-10. C29 versus C28 GPP Performance.. 17
Figure 3-11. C29 versus M7 GPP Performance.. 18
Figure 3-12. C29 versus Proprietary CPU A Performance.. 18
Figure 3-13. OBC Benchmark... 22

www.ti.com Table of Contents

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

List of Tables
Table 2-1. C29 Major Feature.. 6
Table 3-1. Signal Chain Performance of Real-Time Control MCUs... 8
Table 3-2. Model-Based Design Benchmarking...21
Table 3-3. TIDM-1000 Benchmarking.. 22
Table 3-4. TIDM-HV-1PH-DCAC Benchmarking..22
Table 3-5. Machine Learning Benchmarks.. 23
Table 3-6. Flash Efficiency Benchmarks..23
Table 3-7. Code-size Benchmarks...24

Trademarks
C2000™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

1 Introduction to Real-Time Control
In real-time control, a closed-loop system gathers data, processes it in a control loop, and makes updates
within a defined time window. Signal chain performance quantifies real-time control performance, where higher
performance enables faster closed-loop systems. A real-time control system is typically composed of three main
elements:
• Sensing or feedback acquisition: The application can require the accurate measuring of key parameters

(such as voltage, current, motor speed, motor position, and temperature) at precise moments in time.
• Processing and Control: Use sensor data to apply control algorithms on incoming data to compute the next

output command.
• Actuation: The application of the calculated output command to the system to control the output. Changing

the duty cycle of a pulse width modulator (PWM) unit driving a power electronics system is an example of
actuation.

In real-time control, performance of the system is determined not just by the processing power of the CPU, but
also how fast peripherals are accessed the speed of the interrupt response. These factors lead to the notion of a
real-time signal chain.

Figure 1-1 illustrates various components involved in a typical real-time signal chain of motor control and digital
power systems. Better signal chain performance enables higher DC bus use and the operating speed range of a
motor in motor control applications. In digital power applications, better signal chain performance enables higher
control loop frequencies leading to smaller components and lower cost.

ADC Trigger

Sample Output

Latch &

Respond To

Interrupt

Context Save Read ADC Control Algorithm Write PWM

Values

1 2 3 4 5

Figure 1-1. Real-Time Signal Chain Components

Components 1, 2, and 4 are dominated by the CPU architecture while components 3 and 5 are dependent
on CPU and device architecture. This paper primarily highlights improvements in components 1, 2 and 4.
Additionally, C2000 MCUs offer low latency interconnect, enabling single-cycle ADC reads and single-cycle
PWM updates.

www.ti.com Introduction to Real-Time Control

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

2 C29 CPU and Key Features
Figure 2-1 shows the block diagram of the C29 CPU, and its key features and benefits are highlighted below.

Code Pre-Fetch Unit + SECDEC

Safety & Security Unit (SSU)

Program Counter - PC (32 bits)

Return Program Counter - RPC (32 bits)

Data Write Address Gen Unit 1

(8/16/32/64-bits) + ECC Support
Data Read Address Gen Unit 2

(8/16/32/64-bits) + SECDEC

Data Read Address Gen Unit 1

(8/16/32/64-bits) + SECDEC

System Memory & Peripherals

64-bit Line Buffer 64-bit Line Buffer Write Buffer (1 level)128-bit Pre-Fetch Buffer

(4 levels)

Co

Processor

Interface

(CPI)

Interrupt Status Register – ISTS (32 bits)

Decode Status Register – DSTS (32 bits)

Execute Status Register – ESTS (32 bits)

Status Registers

M0 – M31 (32, 32 bit registers)

(or)

XM0 – XM30 (16, 64 bit registers)

Floating Point Registers

Register Move

Ax<->Dx

XAx<->XDx

Register Move

Dx<->Mx

XDx<->XMx

Register Move

Ax<->Mx

XAx<->XMx

Addressing Functional Units

Logical Unit

Multiplier Unit

Add / Sub Unit

Comparator Unit 1/2/3/4

Fixed Point Functional Units

D0 – D15 (16, 32 bit registers)

(or)

XD0 – XD14 (8, 64 bit registers)

Fixed Point Registers

Logical Unit 1/2

Multiplier Unit

Add / Sub Unit 1/2

Comparator Unit 1/2/3/4

A0 – A15 (16, 32 bit registers)

(or)

XA0 – XA14 (8, 64 bit registers)

Addressing Registers

Floating Point Functional Units

Multiplier Unit 1/2

Add / Sub Unit 1/2/3

Comparator Unit 1/2

TMU

P
A

(3
2

)

P
D

(1
2
8
)

E
C

C
 B

it
s

D
R

A
1
(3

2
)

D
R

D
1
(6

4
)

E
C

C
 B

it
s

D
R

A
2
(3

2
)

D
R

D
2
(6

4
)

E
C

C
 B

it
s

D
W

A
1
(3

2
)

D
W

D
1
(6

4
)

E
C

C
 B

it
s

Figure 2-1. C29 Architecture Block Diagram

VLIW CPU: The C29 is based on a Very Long Instruction Word (VLIW) architecture. Variable size instructions
(16-bit, 32-bit, and 48-bit) are supported. The size of the instruction packet can be 16-bit to 128-bits, thus
enabling better code density, as well as up to eight 16-bit instructions that are executed in a single CPU cycle.

CPU Memory Bus: A 128-bit wide program bus can fetch a 128-bit wide instruction packet for the CPU to
execute. Two 64-bit read buses enable parallel reads of 64-bits, and a 64-bit write bus enables writing 64-bit
data to memory, all in a single cycle.

Byte addressability and Data Types: The C29 supports byte addressing, with data types fully compatible with
other popular CPU architectures such as ARM.

CPU Registers: There are three sets of registers; Ax, Dx, and Mx. Ax registers (16 32-bit registers A0-A15
or eight 64-bit registers XA0-XA14) are primarily meant for address generation. Additionally, certain integer
operations are executed in the early phase of pipeline for improved performance. Dx registers (16 32-bit
registers D0-D15 or eight 64-bit registers XD0-XD14) are meant for integer fixed-point operations and Mx
registers (32 32-bit registers M0-M31 or 16 64-bit registers XM0-XM30) are for floating-point operations.

Functional Units: There are a total of 24 functional units associated with register sets Ax, Dx, and Mx, and
special function registers. Each functional unit supports a set of instructions. Certain functional units have
multiple instances. As an example, there are four compare units associated with the Ax register file that evaluate
two cases of a switch statement every cycle that improves switch statement execution. There are two floating-

C29 CPU and Key Features www.ti.com

4 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

point multiply and three floating-point add or subtract units associated with the Mx register set that execute one
FFT butterfly every two cycles.

Trigonometric Math Unit (TMU): Trigonometric operations are supported and extended for a 64-bit dual
precision floating-point, in addition to a 32-bit single precision floating-point.

Interrupts: The C29 supports regular interrupts (termed INT) and an optimized interrupt called real-time interrupt
(RTINT). RTINT uses a dedicated hardware interrupt stack. When an RTINT occurs, CPU context is saved off
automatically to this stack, which is faster than a software based context save mechanism). In addition to being
faster, it is also a fixed number of cycles - thus improving determinism - whereas a software based context
save mechanism can take a variable number of cycles. Hardware interrupt prioritization is supported to reduce
software overhead of prioritization through software.

Safety: Higher ASIL levels requires code isolation among multiple threads running within or across CPUs. The
Safety and Security Unit (SSU) enables isolation among these threads. In a simplistic form, SSU allows a user
to define multiple associated memory regions (called Access Protected Regions (APR)) that can be tied together
(through a concept known as a LINK) to create an isolated thread. A thread consists of code, data, a stack,
and peripherals. A specific code LINK can access specific data LINKs through Read, Write, or both Read and
Write permissions. The advantage of SSU over a traditional MPU is that permissions are enforced based on
code being executed. As a result, there is no need to reprogram the MPU. Each thread has a hardware STACK
and STACKs are switched automatically in the CPU to enable full isolation. In an OS context - AUTOSAR for
example - this efficient switching allows real-time ISRs to be CAT1 interrupts unaffected by the OS, and be
completely isolated from the AUTOSAR application. Thus, a single C29 CPU core can run an OS and control
tasks without affecting control performance.

Security: When code execution moves across STACKs, entry and exit points are enforced. Entry and exit
points are well-defined points where one thread calls or branches into, or returns from, another thread. Calling,
branching to, or returning from any other address creates an exception, therefore avoiding security attacks. The
SSU also supports firmware updates and debug through a mechanism called ZONEs, with each ZONE having
independent password and debug settings. ZONEs enable secure multiparty development, where each party
defines a password to block code visibility and controls code debug by another party.

www.ti.com C29 CPU and Key Features

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Table 2-1. C29 Major Feature
Feature Comment

Ease of Use

• Byte addressable CPU
• Linear and unified memory map with 4GB address range
• Fully protected pipeline
• Deterministic execution without cached memories

Improved Parallelism

• Execute 1 to 8 instructions in parallel
• Execute fixed-point, floating point, and addressing operations in parallel
• Specialized instructions for decision making code and real-time control (example:

if-then-else statements, trigonometric and multiphase vector translation operations)

Improved Bus Throughput

• Capable of fetching up to 128-bit instruction word every cycle
• Capable of performing 8, 16, 32, 64-bit dual reads and single writes per cycle
• Improved addressing modes which reduce overhead in accessing memory and

peripheral resources

Code Efficiency

• Supports variable length instruction set (16-bit, 32-bit, and 48-bit)
• Critical operations are encoded as 16-bit and 32-bit opcodes for improving the code

density
• Rich instruction set optimizes operations in smallest instructions

ASIL-D Safety Capability

• Support for both Lockstep and split lock modes
• Integrated ECC logic enables end to end safe interconnect
• Separate code threads can be fully isolated including stack using SSU
• Zero CPU overhead switching from one thread to other in HW automatically enabled

best real-time performance

Multi-zone Security
• Run time content protection and IP protection of code
• Individual passwords for each zone to control access

Enhanced Debug and Trace Capabilities

• Specialized data logging and code flow trace instructions
• Trace data capable of being logged in on-chip RAM or exported through serial

communication peripherals

2.1 Parallel Architecture and Compiler Entitlement
The C29 ISA has specific designs and instructions targeted to improving specific performance characteristics,
such as:

Real-Time Control and General Purpose Processing

MINMAXF: The MINMAXF instruction bounds a floating-point value present in an M register to a lower limit and
an upper limit, specified in two other M registers.

QUADF: The QUADF instruction sets TDM register (a CPU status register) flags to break up the two
dimensional vector system into 16 segments. By using a scaled value of the input co-ordinate values, the
TDM flag results identifies the segment in a six-segment space-vector generation method. This approach can be
extended to other space-vector variants as well.

Minimize Discontinuities for Decision Making Code

XC: The XC conditional execute instruction checks appropriate status flags A.Z, A.N, A.ZV and A.Z in the DSTS
register, based on the selected instruction. Based on the flags value, a set of instruction packets either execute
instructions or function as a NOP (no operation).

SELECT: The SELECT instruction uses a test condition to select between one of two source registers (such as
A, D, or M registers), whose contents are then copied to a destination register of the same type.

C29 CPU and Key Features www.ti.com

6 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Special Branches

The CPU supports a concepted called Delayed branches, which help achieve zero overhead on discontinuities
(this is explained further below).

Branch instructions with conditions based on LUT functions using test flags (TA.MAP, TDM.MAP) are supported.

QDECB: The multiway QDECB conditional branch instruction checks the content of the A14 register. Based on
the value of the A14 register, program execution either branches to one of four designated branch destinations
or continues with the next instruction packet with a decrement of the A14 register.

DDECB: The multiway DDECB conditional branch instruction checks the content of the A14 register. Based on
the value of the A14 register, program execution either branches to one of two designated branch destinations or
continues with the next instruction packet with a decrement of the A14 register.

The advanced C29 compiler selects the appropriate instructions above, based on the need. In some cases,
such as QUADF, use built-in intrinsics in C code to leverage the corresponding instruction and obtain optimized
performance.

The instruction set user guide mentions the built-in intrinsic (if available) corresponding to an
instruction.

3 C29 Performance Benchmarks
The C29 CPU is designed to offer at least double the performance of the C28 CPU at the same operating
frequency. This section presents performance benchmarking results of the C29 versus C28 and competition
CPUs, and in each case presents some analysis and insight into what aspects of the architecture and compiler
enable that performance level.

Unless otherwise mentioned, benchmarking occurred with the compiler settings optimized for speed
(-O3 for C29 compiler) and run from zero wait-state memory. C29 benchmarking results can update
over time, with updates to the C29 compiler. Current results are with the 0.1.0.STS version of the
compiler.

Similarly, for competition devices, benchmarking occurred with compiler settings optimized for speed,
and run from zero wait-state memory.

3.1 Signal Chain Benchmark with ACI Motor Control
The ACI Motor Control Benchmark simulates the sensorless AC induction (ACI) motor control application. The
application performs all the typical operations, including analog-to-digital converter (ADC) reads for sensing
phase currents, transforming blocks that operate on the sensed current, and PWM writes to control phase
voltages. No special external hardware is needed to provide stimulus as a block of code in the application
models the behavior of an induction motor. To simulate closed loop behavior, the expected current from the
motor model is fed into the ADC through the DAC modules. A single ADC is configured to sense the phase A
and phase B currents sequentially through two channels. Phase C current is derived from phase A and phase
B currents and is not sensed. Three PWM writes simulate control of duty cycle of the three phase A, B, and C
voltages.

Figure 3-1 represents the execution blocks in the control loop interrupt routine of the benchmark application.
The control loop interrupt is triggered at a rate of 2KHz and 1024 iterations of the control loop interrupt routine
are executed before the application terminates. The "ACI Model" and "Inverse Clarke and DAC output" blocks
represent code blocks that are not part of a real ACI motor control application, but are used in the benchmark for
simulating the behavior of the motor.

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

ADC (Sense

Phase

Currents)

CLARKE PARK PID Control
Inverse

PARK
ACI Model

Inverse

CLARKE and

DAC Output

(Phase

current)

Flux and

Speed

Estimator

SVGEN

PWM

(Control

Phase

Voltages)

Sensing Actuation

Feedback expected current

Trigger

(2KHz)

Figure 3-1. Real-Time Control Loop

Signal Chain Performance of Real-Time Control MCUs summarizes the real-time signal-chain performance of
various competition MCUs targeted for real-time control applications. The results include several notable points:

• The F29H85x with a C29 CPU takes the lowest CPU cycles to run the signal chain benchmark, compared to
C28 and competition MCUs.

• The F29H85x with a C29 CPU is 4.31 times faster (cycles) than a competition MCU (1) with a Cortex-M7
CPU

• Even though the F29H85x runs at 200MHz, if the competition MCU 1 at 480MHz is considered as
the baseline, the effective speed per CPU core (eMHz/Core) for the F29H85x is 862MHz (4.31 x 200).
Competition MCU 1 needs to run at 862MHz in order to match the signal-chain performance of the F29H85x
running at 200MHz.

Table 3-1. Signal Chain Performance of Real-Time Control MCUs
MCU CPU CPU type CPU frequency Accelerator Cycles Perf. ratio eMHz/Core
1 Cortex-M7 6-stage

superscalar
pipeline, branch
prediction

480 − 1094 1 480

2 Cortex-M4 3-stage
pipeline, branch
prediction

170 CORDIC 838 1.30 220

3 Proprietary A 4-stage
superscalar
pipeline (dual-
issue), branch
prediction

300 − 857 1.28 384

4 Proprietary B 5-stage
pipeline, limited
dual-issue

200 TFU 894 1.22 244

5 Proprietary C 5-stage pipeline 240 − 1295 0.84 202

AM263P Cortex-R5F 8-stage
pipeline, limited
dual-issue,
branch
prediction

400 TMU 705 1.55 620

F2837x C28 8-stage
pipeline, limited
dual-issue

200 TMU 527 2.08 416

F29H85x C29 9-stage pipeline
VLIW (up to 8
instructions)

200 TMU 254 4.31 862

C29 Performance Benchmarks www.ti.com

8 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

3.2 Real-time Control and DSP Performance
The C29 CPU is very efficient at performing real-time control and DSP operations. Detailed benchmarking
demonstrates this capability on the following benchmarks:

• CFFT - Complex Fast Fourier Transform
• FIR - Finite Impulse Response Filter
• IIR_sample - one input sample of an Infinite Impulse Response filter
• IIR_loop - a block of input samples of an Infinite Impulse Response filter
• DCL - Digital Control Library (comprising PI, PID, etc.)
• FCL - Fast Current Loop
• SPLL - Software Phase Locked Loop
• SVGEN - Space Vector Generation
• FOC - Field Oriented Control for Motor Control (same as ACI signal chain)
• Bin_LUT - Binary LUT search

Figure 3-2 shows C29 versus C28 performance on the above benchmarks. On average, considering the
benchmarks shown, the C29 is 3x better (in cycles) than the C28 CPU.

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

0

1

2

3

4

5

6

CFFT
FIR

IIR
_s

am
ple

IIR
_lo

op DCL
FCL

SPLL

SVGEN
FOC

Bin_
LU

T_s
ea

rch

Figure 3-2. C29 versus C28 Real-time Control and DSP Performance

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Figure 3-3 shows C29 versus Cortex-M7 performance on the above benchmarks. On average, considering the
benchmarks shown, the C29 is almost 4x better (in cycles) than the Cortex-M7 CPU.

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

0

1

2

3

4

5

6

7

8

CFFT
FIR

IIR
_s

am
ple

IIR
_lo

op DCL
FCL

SPLL

SVGEN
FOC

Bin_
LU

T_s
ea

rch

Figure 3-3. C29 versus M7 Real-time Control and DSP Performance

Figure 3-4 shows C29 versus a Proprietary CPU performance on the above benchmarks. On average,
considering the benchmarks shown, the C29 is four times better (in cycles) than the popular Proprietary CPU.

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

0

1

2

3

4

5

6

7

8

FIR

IIR
_s

am
ple

IIR
_lo

op DCL
FCL

SPLL

SVGEN
FOC

Figure 3-4. C29 versus Proprietary CPU A Real-time control and DSP Performance

C29 Performance Benchmarks www.ti.com

10 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

3.2.1 Examples and Factors Contributing to Results

This section provides insight and analysis into the architecture and compiler to help understand the results
illustrated above.

3.2.1.1 Saturation (or Limiting) Example

Saturation type code commonly occurs in real-time applications. shows a summary of two different ways
saturation is implemented in C.

The code block below shows the if..else based approach to implementing saturation. The C29 (11 cycles,
independent of input) outperforms the Cortex-M7 (14-27 cycles, dependent on input). On the C29, the if() is
implemented through a conditional branch instruction (BC), and for the remaining two paths (the elseif and else),
a compare (CMPF) followed by a conditional instruction (XCP) is used, thus avoiding branches.

volatile float in;
volatile float out;
const float max =1.0f;
const float min = -1.0f;
if(in > max)
 out = max;
else if(in < min)
 out = min;
else
 out = in;

C29 Implementation
LD.32 M1,@in
||ONEF M0
CMPF TDM0,M.GT,M1,M0
ONEF M1
|| BC @($LBB0_2),TDM0.NZ
LD.32 M1,@in
|| NEGONEF M2
CMPF TDM0,M.LT,M1,M2
XCP #0x1,TDM0.Z
|| LD.32 M1,@in
SELECT TDM0,M1,M2,M1
$LBB0_2:
ST.32 @out,M1

M7 Implementation
MOVW R0,#in2
MOVT R0,#in2
MOVS R1,#+1
MOVT R1,#+16256
VLDR S0,[R0, #0]
VMOV S1,R1
VCMP.F32 S0,S1
FMSTAT
BLT.N saturation_0
MOV R2,#+1065353216
STR R2,[R0, #+4]
B saturation_2
saturation_0:
VMOV.F32 S0,#-1.0
VLDR S1,[R0, #0]
VCMP.F32 S1,S0
FMSTAT
BPL.N saturation1_1
VSTR S0,[R0, #+4]
B saturation_2
saturation_1:
LDR R1,[R0, #+0]
STR R1,[R0, #+4]
saturation_2:

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

The code block below shows the ternary operator '?' based approach to implementing saturation. The C29
(three cycles, independent of input) outperforms the Cortex-M7 (18-22 cycles, dependent on input), through the
MINMAXF instruction without any branches.

volatile float in;
volatile float out;
const float max =1.0f;
const float min = -1.0f;

float temp = in;
temp = (temp > max)? max: ((temp < min)? min: temp);
out = temp;

C29 Implementation
ONEF M0 || LD.32 M1,@in || NEGONEF M2 MINMAXF M1,M0,M2 ST.32 @out,M1

M7 Implementation
MOVW R0,#in2
MOVS R1,#+1
MOVT R0,#in2
MOVT R1,#+16256
VMOV S2,R1
VLDR S0,[R0, #0]
VCMP.F32 S0,S2
VMOV.F32 S1,S0
FMSTAT
IT GE
VMOVGE.F32 S1,#1.0
BGE.N saturation_0
VMOV.F32 S2,#-1.0
VCMP.F32 S0,S2
FMSTAT
IT MI
VMOVMI.F32 S1,S2
saturation_0:
VSTR S1,[R0, #+8]

The C29 compiler is enhanced to generate equal performance regardless of the if..else or the ternary
operator based approaches.

|| denotes instructions occurring in parallel with the above instructions.

3.2.1.2 Dead Zone Example

Dead zone code commonly occurs in real-time applications.

The code block below shows the the ternary operator '?' based approach to implementing dead zone code. The
C29 (10 cycles, independent of input) outperforms the C28 (25-36 cycles, dependent on input) and Cortex-M7
(23-35 cycles, dependent on input). This efficiency is achieved through the delayed return instruction (RETD)
and well-utilized delay slots containing compare (CMPF) and assignment (SELECT) instructions.

float deadzone(float in)
{
 float out;
 float out_pos = in - 1.0f;
 float out_neg = in + 1.0f;
 out = (in > 1.0f)? out_pos : ((in > -1.0f)? 0.0f : out_neg);
 return out;
}
C29 Implementation
Function call:
CALL @deadzone
|| LD.32 M0,@in1
;---------CALLD occurs
ST.32 @out1,M0
 deadzone:
ONEF M1
|| NEGONEF M2
SADDF M3,M0,M2
|| CMPF TDM0,M.GT,M0,M2
|| SADDF M2,M0,M1

C29 Performance Benchmarks www.ti.com

12 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

|| RETD
ZERO M4
CMPF TDM1,M.GT,M0,M1
|| SELECT TDM0,M0,M4,M2
SELECT TDM1,M0,M3,M0

C28 Implementation
Function call: MOVW DP,#_in1
MOV32 R0H,@_in1
LCR #_deadzone
MOVW DP,#_out1
MOV32 @_out1,R0H

_deadzone:
ADDB SP,#2
CMPF32 R0H,#16256
MOVST0 ZF, NF
B CL1,LEQ
ADDF32 R0H,R0H,#49024
B CL3,UNC
CL1:
CMPF32 R0H,#49024
MOVST0 ZF, NF
B CL2,LEQ
ZERO R0H
B CL3,UNC
CL2:
ADDF32 R0H,R0H,#16256
CL3:
SUBB SP,#2
LRETR

M7 Implementation
Function call:
VLDR S0,[R6, #+144]
BL deadzone
VSTR S0,[R6, #+152]

deadzone:
MOVS R0,#+1
MOVT R0,#+16256
VMOV S2,R0
VMOV.F32 S1,S0
VCMP.F32 S1,S2
FMSTAT
VMOV.F32 S0,#1.0
VADD.F32 S0,S1,S0
BLT.N deadzone_0
VMOV.F32 S3,#-1.0
VADD.F32 S0,S1,S3
BX LR
deadzone_0:
MVN R1,#+1082130432
VMOV S4,R1
VCMP.F32 S1,S4
FMSTAT
ITT GE
MOVGE R0,#+0
VMOVGE S0,R0
BX LR

3.2.1.3 Space Vector Generation (SVGEN) Example

Space Vector Generation (SVGEN) is a common function found in motor control systems, where a vector (α, β)
is mapped to a 6-segment space vector, to generate 3 PWM signals. In a normal implementation of SVGEN,

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

as shown in Figure 3-5, if..else statements are used (left-side of Figure), and the compiler generates code that
contains branches (right-side of Figure).

Figure 3-5. Normal Implementation of SVGEN

In an optimized implementation of SVGEN, as shown in Figure 3-6, the implementation uses the QUADF
instruction of the C29, through an intrinsic, __builtin_c29_quadf32. The instruction breaks up the 2-D space
into 16 segments. Then a switch() statement maps the 16-segment space to 6-segment space. The C code is
illustrated on the left side of the Figure, and the compiler generated assembly on the right side of the Figure. The
generated assembly is now straight line code, without branches, and is parallelized (four instructions in parallel
every cycle).

Optimized implementation takes 24 cycles on the C29, irrespective of the inputs, whereas the normal
implementation takes 26-43 cycles, depending on the inputs. On the C28, the normal implementation takes
70-100 cycles. On the Cortex-M7, the normal implementation takes 58-73 cycles, depending on the inputs.

Figure 3-6. Optimized Implementation of SVGEN on C29

C29 Performance Benchmarks www.ti.com

14 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

TI provides libraries covering real-time control and DSP. Specific cases where an optimized
implementation of a library yields performance improvements over a natural implementation are called
out.

3.2.1.4 Software Pipelining

Software pipelining of loops allows multiple iterations of loops to execute in parallel, leveraging the VLIW
architecture of the C29 CPU. In Figure 3-7, software pipelining is illustrated for the CFFT. The assembly is
hand-written, where the complete 128-bit instruction packet is used and 8 instructions are executed in parallel
per cycle in the loop.

Figure 3-7. Software Pipelining in CFFT - Handwritten Assembly

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

With -O3 optimization, the C29 compiler generates software pipelined loops, as shown in Figure 3-8, for the FIR.
Software pipelining allows loops to perform faster.

Figure 3-8. Software Pipelining in FIR - Compiler Generated

The compiler generates software pipelined loops at -O3 optimization setting that boosts performance
for code with loops.

3.2.2 Customer Control and Math Benchmarks

Figure 3-9 shows C29 performance compared to the C28 CPU (in cycles) on select benchmarks that were
received directly from customers (denoted A through E). These represent actual customer representative code
varying in functionality from Math to Motor Control to Interpolation. C_Motor represents a dual motor benchmark,
where two motor instances are run. The parallel C29 architecture is used in this benchmark, resulting in more
than five times better performance (in cycles) than the C28 CPU.

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

0

1

2

3

4

5

6

A_Math B_Interp C_MC D_Math E_Math

Figure 3-9. Customer Control and Math Benchmarks

C29 Performance Benchmarks www.ti.com

16 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Parallel architecture is not used effectively in the D_Math benchmark, which contains only volatile
variables. With volatile variables, the compiler performs a load from or a store to memory every time
a variable is used. This removes the ability to store the variable in a register and minimize memory
accesses until absolutely necessary. Therefore, carefully consider using volatile variables in code.

3.3 General Purpose Processing (GPP) Performance
In addition to real-time control, the C29 CPU has excellent GPP performance. Figure 3-10 shows C29
performance compared to the C28 CPU on select benchmarks that were received directly from customers
(denoted F and G). F and G benchmarks represent actual customer benchmarks containing GPP code. F_GPP
contains over 100 if() statements and G_GPP contains over 30 if() statements. The benchmarks also contain
logical, bit-wise, and arithmetic operations. Figure 3-11 shows C29 versus Cortex-M7 performance for these
same benchmarks, and Figure 3-12 shows C29 versus proprietary CPU A performance. Not only is the C29
nearly three times better (in cycles) than the C28 CPU at GPP code, it is almost 50% better (in cycles) than the
Cortex-M7, and twice better (in cycles) than proprietary CPU A.

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

2.64

2.66

2.68

2.7

2.72

2.74

2.76

2.78

2.8

2.82

F_GPP G_GPP

Figure 3-10. C29 versus C28 GPP Performance

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F_GPP G_GPP

Figure 3-11. C29 versus M7 GPP Performance

Benchmark

Pe
rfo

rm
an

ce
 R

at
io

0

0.5

1

1.5

2

2.5

3

F_GPP G_GPP

Figure 3-12. C29 versus Proprietary CPU A Performance

3.3.1 Examples and Factors Contributing to Results

This section provides insight and analysis into the architecture and compiler to explain the results illustrated
above. The C29 CPU's improved GPP performance is attributed to a number of enhancements:

• Multiple general purpose functional units in the C29 CPU boost general purpose performance.
• Delayed branches, leading to effectively no branch penalties; this is explained in the discontinuity

management sub-section.
• Condition execution instructions for short branches; this is illustrated in the saturation and deadzone

examples.
• Special branch instructions that allow the C29 compiler to collapse multiple branch destinations into a single

instruction, illustrated in the switch example sub-section.

C29 Performance Benchmarks www.ti.com

18 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

3.3.1.1 Discontinuity Management

Traditionally, Branch, Call, and Return operations incur overhead because of the instruction pipeline. The CPU
fetches, decodes, and determines that a branch, call, or return operation needs to occur in the Decode-2 phase
of the pipeline. By this time, the pipeline is filled with next instructions, which need to be flushed before the
instruction at the discontinuity destination is fetched. Flushing of instructions results in overhead.

The C29 CPU has a 9-stage pipeline, with discontinuity decision occurring in the Decode-2 (D2) phase of the
pipeline. Therefore, three instructions following a discontinuity instruction are already in the pipeline (the Fetch-1,
Fetch-2, and Decode-1 phases of pipeline). In addition to regular branch, call, or return instructions, the C29 ISA
supports delayed branch, call, or return instructions (the corresponding instruction has a trailing D, for example
CALLD, RETD). When these delayed discontinuity instructions are used, three instructions immediately following
them are always executed, regardless of whether the discontinuity occurs or not (in the case of a conditional
branch). The three instructions following a delayed discontinuity instruction are referred to as delay slots. The
C29 Compiler, when using the delay slot version of these instructions, inserts appropriate instructions into delay
slots, thus reducing the discontinuity overhead from three cycles to effectively zero cycles.

Two examples illustrating the use of this by a compiler are shown below.

• A function call where 6 function arguments are passed in three delay slots.

@CALLD funcA ; Call funcA
||LD.32 A4,@pointer1 ; Load A4 with pointer1 value from memory
LD.32 A5,@pointer2 ; Load A5 with pointer2 value from memory
||SUB.U16 A6,SP,#34 ; A6 points to value on stack offset -34
MV A7,#ArrayB ; Load A7 with address of ArrayB
||LD.32 D0,@variable1 ; Load D0 with Variable1 from memory
LD.32 D1,@variable2 ; Load D1 with Variable2 from memory
; Total Cycles = 4

• A return with where the saved registers are restored and the stack is deallocated in three delay slots.

funcA: ADD.U16 SP,SP,#24 ; Allocate local stack space
 ST.64 *(SP-#24),XM2 ; Save XM2, XM4, XM6 registers on stack
 ST.64 *(SP-#16),XM4
 ST.64 *(SP-#8),XM6
 ... user code...
 RETD *(SP-#32) ; packet 1:Return and restore RPC from stack
 ||MV M0,M3 ; Place return value in register M0
 LD.64 XM6,*(SP-#8) ; packet 2:Restore XM6 from stack
 LD.64 XM4,*(SP-#16) ; packet 3:Restore XM4 from stack
 LD.64 XM2,*(SP-#24) ; packet 4:Restore XM2 from stack
 ||SUB.U16 SP,SP,#32 ; Deallocate local + return stack space
; Total Cycles = 4

The above examples are models of how the C29 compiler uses delay slots. In practice, delay slots
are used for more than just function argument passing and register restoration and stack deallocation.
Delay slots often contain instructions for implementing the actual functionality of user code.

3.3.1.2 Switch() Example

Special branch instructions allow the C29 compiler to collapse multiple branch destinations into a single
instruction. switch is a common construct that occurs in general purpose code, such as housekeeping tasks.
The C29 ISA has multiway branch instructions QDECB and DDECB that allow very efficient implementation. In
quad decrement branch (QDECB), four destinations are allowed, with the fifth option being linear execution. In
dual decrement branch (DDECB), two destinations are allowed, and the third option is linear execution.

A 16 case switch statement is illustrated in the code block below. On the C29 CPU, the switch is implemented
with one branch instruction (BCMP) and four QDECB instructions, taking 10 to 17 cycles, depending on the
input. On the Cortex-M7, the switch is implemented with compare and branch instructions for each case, thus
taking 6 to 51 cycles, depending on the input.

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

switch(state) { case 15: break; case 14: break; case 13: break; case 0:
break; default: break; }

C29 Implementation
LD.32 A14,@State
BCMP @default,A.GT,A14,#15 QDECBA14,#0x4,@case15,@Case14,@Case13,@Case12,@
QDECBA14,#0x4,@case11,@Case10,@Case9,@Case8,@ QDECBA14,#0x2,@case7,@case6,@case5,@case4,@
QDECBA14,#0x2,@case3,@case2,@case1,@case0,@
default:
....
....
LB @State_end
case15:
....
....
LB @State_end
case14:
....
....
LB @State_end
case13:
....
....
LB @State_end
....
....
....
case2:
....
....
LB @State_end
case1:
....
....
LB @State_end
case0:
....
....
State_end:

M7 Implementation
LDRSB R6,[State]
CMP R6,#15
BGT.N default
BEQ.N case15
CMP R6,#14
BEQ.N case14
....
CMP R6,#0
BEQ.N case0
default:
....
....
B State_end
case15:
....
....
B State_end
case14:
....
....
B State_end
case13:
....
....
B State_end
....
....
....
case2:
....
....
B State_end
case1:
....
....

C29 Performance Benchmarks www.ti.com

20 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

B State_end
case0:
....
....
State_end:

3.4 Model-Based Design Benchmarks
Customers are increasingly shifting towards model-based design and auto code generation. Thus, it is important
to understand the performance expected with auto code generation tools, such as Embedded Coder from The
Mathworks. At the time of this publication, the C29 is not yet supported in a released version of Embedded
Coder, therefore C code generated for the C28 CPU is used for benchmarking. The Sensorless Field Oriented
Control based motor control model consists of closed loop control and a Sliding Mode Observer (SMO).
The generated code has real-time control components, as well as GPP components. Model-Based Design
Benchmarking shows the benchmarking results, which illustrates the performance of the C29 is more than twice
better (in cycles) than the Cortex-M4 based competition MCU.

Table 3-2. Model-Based Design Benchmarking
MCU Cycles Performance Ratio
#6 (Cortex-M4) 877 1

F29H85x (C29) 393 2.23

F29H85x (C29) 312 (with some hand optimization of
generated code)

2.81

3.5 Application Benchmarks
Until now, the presented benchmarks have covered a real-time signal chain, customer benchmarks, specific
control and DSP blocks, as well as general purpose benchmarks. This section describes benchmarking results
comparing C29 and C28 performance using C2000 reference designs focused on real-time applications such as
Digital Power and Motor Control.

C29 based reference designs have not been released, and are a work in progress, therefore early
benchmarking results are presented here.

3.5.1 Single Phase 7kW OBC Description

TIDM-2013 is a reference design built using the F28x family of devices to implement single phase OBC design.
The design consists of an interleaved continuous conduction mode (CCM) totem-pole (TTPL) bridgeless power-
factor correction (PFC) power stage followed by a CLLLC DCDC power stage. The design runs the following
ISRs at the mentioned frequencies:

• ISR1 (PWM Update): 120KHz
• ISR2 (PFC Current, CLLC Voltage Loop): 120KHz
• ISR3 (PFC Voltage Loop + Instrumentation): 10KHz

Figure 3-13 shows benchmarks for the above ISRs comparing F29x versus F28x running at the same CPU clock
frequency of 200MHz. ISR1 does not change between F29x and F28x because the primary operations in it are
PWM peripheral register writes, which do not change between F28x and F29x. ISR2 on F29x is 1.7 times faster
compared to F28x.

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TIDM-02013
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Ex
ec

ut
io

n
Ti

m
e

(
s)

0

2

4

6

8

10

12

14

16

ISR1 (uSec) ISR2 (uSec) ISR3 (uSec)

C29
R52
C28

Figure 3-13. OBC Benchmark

3.5.2 Vienna Rectifier-Based Three Phase Power Factor Correction

Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications, such as
off board EV chargers and telecom rectifiers. TIDM-1000 illustrates a method to control the power stage using
C2000™ microcontrollers (MCUs). TIDM-1000 Benchmarking shows early benchmarking results on Lab four
(closed voltage loop with inner current loop and midpoint voltage balancing). The cycles are measured inside the
ISR from start to finish. The results show the F29x achieves twice (in cycles) the performance of the C28 CPU.

Table 3-3. TIDM-1000 Benchmarking
TIDM-1000 Cycles Performance Ratio
F2837x (C28) 308 1

F29H85x (C29) 153 2.01

3.5.3 Single-Phase Inverter

TIDM-HV-1PH-DCAC implements single-phase inverter (DC-AC) control using the C2000™ F2837xD and
F28004x microcontrollers. TIDM-HV-1PH-DCAC Benchmarking shows early benchmarking results on Lab 3
(closed voltage loop with inner current loop). The cycles are measured inside the ISR from the beginning until
the end. The results show the C29 achieves 80% better performance (in cycles) than the C28 CPU.

Table 3-4. TIDM-HV-1PH-DCAC Benchmarking
TIDM-HV-1PH-DCAC Cycles Performance Ratio
F2837x (C28) 609 1

F29H85x (C29) 332 1.83

3.5.4 Machine Learning

Machine Learning (ML) techniques in real-time control are emerging, with applications such as arc fault detection
and motor fault detection. Artifical Intelligence (AI) accelerators on-chip are becoming common to run embedded
AI models. However, ML performance on real-time control CPUs is also an important consideration. Machine
Learning Benchmarks shows benchmarks of 3, 4, and 5-layer Computational Neural Networks (CNN) on a
Cortex-M7 MCU and the C29 based F29H85x. The C29 is almost five times faster than the Cortex-M7, even with
the latter operating at twice the CPU frequency.

C29 Performance Benchmarks www.ti.com

22 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://ti.com/tool/TIDM-1000
https://www.ti.com/tool/TIDM-HV-1PH-DCAC
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Table 3-5. Machine Learning Benchmarks
Model Cortex-M7 400MHz, floating-point model

(milliseconds)
F29H85x (C29) 200MHz, floating-point
model (milliseconds)

3-layer CNN 11.54 2.33

4-layer CNN 11.82 2.35

5-layer CNN 12.02 2.30

3.6 Flash Memory Efficiency
Flash execution efficiency is important because not all code can run from zero wait-state memory. On F29H85x
at 200MHz, three wait-states are needed for flash access. Further, pre-fetch and block cache mechanisms are
available to mitigate the effect of the wait states, and they are enabled. Flash Efficiency Benchmarks shows
flash efficiency results in percentages (%) for some benchmarks comparing F29H85x and F2837x (also three
wait-states at 200MHz). For many benchmarks, running from flash is akin to running from zero wait-state
memory.

Table 3-6. Flash Efficiency Benchmarks
Benchmark F2837x (%) F29H85x (%)
CFFT 81 93

FIR 91 86

IIR (loop) 82 99

Signal-chain (ACI) 95 97

Binary LUT search 82 97

3.7 Code-size Efficiency
In addition to performance efficiency, code-size efficiency is an important metric, especially when zero wait-
state memory is limited. Performance critical code is usually run out of zero wait-state memory, and non
performance critical code is run from Flash memory. Code-size Benchmarks shows code-size efficiency of
various benchmarks, comparing C29 with C28 and ARM (Cortex-M7). A few points are noted from the results:

• C29 code-size is mostly comparable to C28, as well as Cortex-M7 code-size. In some benchmarks, the C29
achieves lower code-size, and in some other benchmarks higher code-size.

• Code-size results correspond to the -O3 optimization setting of the compiler. The user has the flexibility to
selectively use -Oz on portions of code to reduce code-size.

• C29 FIR code-size is larger because of software pipelining (which results in a huge performance boost).
Loops, in general, are a small part of overall code.

www.ti.com C29 Performance Benchmarks

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

23

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

Table 3-7. Code-size Benchmarks
DSP, Math, and Real-time Benchmarks C28 versus C29 code-size (C) <1 implies

C28 code-size is smaller
Cortex-M7 vs C29 code-size (C) <1 implies

Cortex-M7 code-size is smaller
FIR 0.5 0.7

IIR 0.7 1.4

DCL (Digital Control Library) 1.5 1.5

FCL (Fast Current Loop) 1.1 1.1

SPLL (Software Phase Locked Loop) 1.7 1.2

SVGEN 1.2 1

ACI signal chain 0.9 0.6

Customer DSP, Math, and Real-time Benchmarks

B_Interp 1.1 1

C_Motor 1.3 1

D_Math 0.8 0.8

E_Math 1 0.7

GPP Benchmarks

F_GPP 0.8 0.8

G_GPP 0.7 0.7

Reference designs

Vienna Rectifier 0.94 −

Single-phase inverter 0.75 −

4 Summary
Industrial and Automotive applications requirements on efficiency and power density are ever increasing. Thus,
the need has never been greater for scalable real-time MCUs with enhanced performance, that enable advanced
topologies and integration options, and offer inbuilt safety and security features. The new C29 CPU with
unrivaled real-time performance is highly optimized to meet the above challenges. The C29 CPU's parallel
architecture enables implementing in a single core what traditionally requires multiple CPUs. This white paper
demonstrates a broad spectrum of benchmarks that affirm the C29 CPU's capability. The C29 compiler provides
out of the box performance entitlement on C code. The SSU tightly coupled to the C29 CPU allows users to
seamlessly develop secure, ASIL-D safety applications, without the need for reprogramming.

5 References
1. Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers data sheet
2. Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers technical reference manual
3. Texas Instruments, Application Software Migration to the C29 CPU user's guide
4. Texas Instruments, Implementing Run-Time Safety and Security Protections With the C29x SSU application

note
5. Texas Instruments, TI C29x Clang Compiler Tools user’s guide
6. Texas Instruments, Real-time Benchmarks Showcasing C2000 Control MCU's Optimized Signal Chain

application note
7. Texas Instruments, TMS320F2837x, TMS320F2838x, TMS320F28P65x Migration to TMS320F29H85x

Summary www.ti.com

24 The C29 CPU – Unrivaled Real-Time Performance with Optimized Architecture
on C2000™ MCUs

SPRADD8 – NOVEMBER 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/sprsp93
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruiy8
https://www.ti.com/lit/pdf/spradk2
https://www.ti.com/lit/pdf/spradk2
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/index.html
https://www.ti.com/lit/pdf/spracw5
https://www.ti.com/lit/pdf/spracw5
https://www.ti.com/lit/pdf/spruja3
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADD8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADD8&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction to Real-Time Control
	2 C29 CPU and Key Features
	2.1 Parallel Architecture and Compiler Entitlement

	3 C29 Performance Benchmarks
	3.1 Signal Chain Benchmark with ACI Motor Control
	3.2 Real-time Control and DSP Performance
	3.2.1 Examples and Factors Contributing to Results
	3.2.1.1 Saturation (or Limiting) Example
	3.2.1.2 Dead Zone Example
	3.2.1.3 Space Vector Generation (SVGEN) Example
	3.2.1.4 Software Pipelining

	3.2.2 Customer Control and Math Benchmarks

	3.3 General Purpose Processing (GPP) Performance
	3.3.1 Examples and Factors Contributing to Results
	3.3.1.1 Discontinuity Management
	3.3.1.2 Switch() Example

	3.4 Model-Based Design Benchmarks
	3.5 Application Benchmarks
	3.5.1 Single Phase 7kW OBC Description
	3.5.2 Vienna Rectifier-Based Three Phase Power Factor Correction
	3.5.3 Single-Phase Inverter
	3.5.4 Machine Learning

	3.6 Flash Memory Efficiency
	3.7 Code-size Efficiency

	4 Summary
	5 References

