SLVSEO0C August   2021  – June 2024 ADC12DJ4000RF

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: DC Specifications
    6. 6.6  Electrical Characteristics: Power Consumption
    7. 6.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 6.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Analog Input Protection
        2. 7.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 7.3.1.3 Analog Input Offset Adjust
      2. 7.3.2 ADC Core
        1. 7.3.2.1 ADC Theory of Operation
        2. 7.3.2.2 ADC Core Calibration
        3. 7.3.2.3 Analog Reference Voltage
        4. 7.3.2.4 ADC Overrange Detection
        5. 7.3.2.5 Code Error Rate (CER)
      3. 7.3.3 Temperature Monitoring Diode
      4. 7.3.4 Timestamp
      5. 7.3.5 Clocking
        1. 7.3.5.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 7.3.5.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 7.3.5.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 7.3.5.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 7.3.5.3.2 Automatic SYSREF Calibration
      6. 7.3.6 Programmable FIR Filter (PFIR)
        1. 7.3.6.1 Dual Channel Equalization
        2. 7.3.6.2 Single Channel Equalization
        3. 7.3.6.3 Time Varying Filter
      7. 7.3.7 Digital Down Converters (DDC)
        1. 7.3.7.1 Rounding and Saturation
        2. 7.3.7.2 Numerically-Controlled Oscillator and Complex Mixer
          1. 7.3.7.2.1 NCO Fast Frequency Hopping (FFH)
          2. 7.3.7.2.2 NCO Selection
          3. 7.3.7.2.3 Basic NCO Frequency Setting Mode
          4. 7.3.7.2.4 Rational NCO Frequency Setting Mode
          5. 7.3.7.2.5 NCO Phase Offset Setting
          6. 7.3.7.2.6 NCO Phase Synchronization
        3. 7.3.7.3 Decimation Filters
        4. 7.3.7.4 Output Data Format
        5. 7.3.7.5 Decimation Settings
          1. 7.3.7.5.1 Decimation Factor
          2. 7.3.7.5.2 DDC Gain Boost
      8. 7.3.8 JESD204C Interface
        1. 7.3.8.1  Transport Layer
        2. 7.3.8.2  Scrambler
        3. 7.3.8.3  Link Layer
        4. 7.3.8.4  8B/10B Link Layer
          1. 7.3.8.4.1 Data Encoding (8B/10B)
          2. 7.3.8.4.2 Multiframes and the Local Multiframe Clock (LMFC)
          3. 7.3.8.4.3 Code Group Synchronization (CGS)
          4. 7.3.8.4.4 Initial Lane Alignment Sequence (ILAS)
          5. 7.3.8.4.5 Frame and Multiframe Monitoring
        5. 7.3.8.5  64B/66B Link Layer
          1. 7.3.8.5.1 64B/66B Encoding
          2. 7.3.8.5.2 Multiblocks, Extended Multiblocks and the Local Extended Multiblock Clock (LEMC)
          3. 7.3.8.5.3 Block, Multiblock and Extended Multiblock Alignment using Sync Header
            1. 7.3.8.5.3.1 Cyclic Redundancy Check (CRC) Mode
            2. 7.3.8.5.3.2 Forward Error Correction (FEC) Mode
          4. 7.3.8.5.4 Initial Lane Alignment
          5. 7.3.8.5.5 Block, Multiblock and Extended Multiblock Alignment Monitoring
        6. 7.3.8.6  Physical Layer
        7. 7.3.8.7  SerDes Pre-Emphasis
        8. 7.3.8.8  JESD204C Enable
        9. 7.3.8.9  Multi-Device Synchronization and Deterministic Latency
        10. 7.3.8.10 Operation in Subclass 0 Systems
      9. 7.3.9 Alarm Monitoring
        1. 7.3.9.1 NCO Upset Detection
        2. 7.3.9.2 Clock Upset Detection
        3. 7.3.9.3 FIFO Upset Detection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Dual-Channel Mode
      2. 7.4.2 Single-Channel Mode (DES Mode)
      3. 7.4.3 Dual-Input Single-Channel Mode (DUAL DES Mode)
      4. 7.4.4 JESD204C Modes
        1. 7.4.4.1 JESD204C Operating Modes Table
        2. 7.4.4.2 JESD204C Modes continued
        3. 7.4.4.3 JESD204C Transport Layer Data Formats
        4. 7.4.4.4 64B/66B Sync Header Stream Configuration
        5. 7.4.4.5 Dual DDC and Redundant Data Mode
      5. 7.4.5 Power-Down Modes
      6. 7.4.6 Test Modes
        1. 7.4.6.1 Serializer Test-Mode Details
        2. 7.4.6.2 PRBS Test Modes
        3. 7.4.6.3 Clock Pattern Mode
        4. 7.4.6.4 Ramp Test Mode
        5. 7.4.6.5 Short and Long Transport Test Mode
          1. 7.4.6.5.1 Short Transport Test Pattern
          2. 7.4.6.5.2 Long Transport Test Pattern
        6. 7.4.6.6 D21.5 Test Mode
        7. 7.4.6.7 K28.5 Test Mode
        8. 7.4.6.8 Repeated ILA Test Mode
        9. 7.4.6.9 Modified RPAT Test Mode
      7. 7.4.7 Calibration Modes and Trimming
        1. 7.4.7.1 Foreground Calibration Mode
        2. 7.4.7.2 Background Calibration Mode
        3. 7.4.7.3 Low-Power Background Calibration (LPBG) Mode
      8. 7.4.8 Offset Calibration
      9. 7.4.9 Trimming
    5. 7.5 Programming
      1. 7.5.1 Using the Serial Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Streaming Mode
    6. 7.6 SPI Register Map
  9. Application Information Disclaimer
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Wideband RF Sampling Receiver
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Input Signal Path
          2. 8.2.1.1.2 Clocking
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Calculating Values of AC-Coupling Capacitors
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Set Up
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Sequencing
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Calculating Values of AC-Coupling Capacitors

AC-coupling capacitors are used in the input CLK± and JESD204C output data pairs. The capacitor values must be large enough to address the lowest frequency signals of interest, but not so large as to cause excessively long startup biasing times, or unwanted parasitic inductance.

The minimum capacitor value can be calculated based on the lowest frequency signal that is transferred through the capacitor. Given a 50-Ω single-ended clock or data path impedance, good practice is to set the capacitor impedance to be <1 Ω at the lowest frequency of interest. This setting specifies minimal impact on signal level at that frequency. For the CLK± path, the minimum-rated clock frequency is 800 MHz. Therefore, the minimum capacitor value can be calculated from:

Equation 17. ADC12DJ4000RF

Setting Zc = 1 Ω and rearranging gives:

Equation 18. ADC12DJ4000RF

Therefore, a capacitance value of at least 199 pF is needed to provide the low-frequency response for the CLK± path. If the minimum clock frequency is higher than 800 MHz, this calculation can be revisited for that frequency. Similar calculations can be done for the JESD204C output data capacitors based on the minimum frequency in that interface. Capacitors must also be selected for good response at high frequencies, and with dimensions that match the high-frequency signal traces they are connected to. Capacitors of the 0201 size are frequently well suited to these applications.