SLVSDR3C may   2018  – may 2023 ADC12DL3200

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Revision History
  6. 5Pin Configuration and Functions
  7. 6Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: DC Specifications
    6. 6.6  Electrical Characteristics: Power Consumption
    7. 6.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 6.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Typical Characteristics
  8. 7Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Analog Input Protection
        2. 7.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 7.3.1.3 Analog Input Offset Adjust
      2. 7.3.2 ADC Core
        1. 7.3.2.1 ADC Theory of Operation
        2. 7.3.2.2 ADC Core Calibration
        3. 7.3.2.3 ADC Overrange Detection
        4. 7.3.2.4 Code Error Rate (CER)
        5. 7.3.2.5 Internal Dither
      3. 7.3.3 Timestamp
      4. 7.3.4 Clocking
        1. 7.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 7.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 7.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 7.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 7.3.4.3.2 Automatic SYSREF Calibration
      5. 7.3.5 LVDS Digital Interface
        1. 7.3.5.1 Multi-Device Synchronization and Deterministic Latency Using Strobes
          1. 7.3.5.1.1 Dedicated Strobe Pins
          2. 7.3.5.1.2 Reduced Width Interface With Dedicated Strobe Pins
          3. 7.3.5.1.3 LSB Replacement With a Strobe
          4. 7.3.5.1.4 Strobe Over All Data Pairs
      6. 7.3.6 Alarm Monitoring
        1. 7.3.6.1 Clock Upset Detection
      7. 7.3.7 Temperature Monitoring Diode
      8. 7.3.8 Analog Reference Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Dual-Channel Mode (Non-DES Mode)
      2. 7.4.2 Internal Dither Modes
      3. 7.4.3 Single-Channel Mode (DES Mode)
      4. 7.4.4 LVDS Output Driver Modes
      5. 7.4.5 LVDS Output Modes
        1. 7.4.5.1 Staggered Output Mode
        2. 7.4.5.2 Aligned Output Mode
        3. 7.4.5.3 Reducing the Number of Strobes
        4. 7.4.5.4 Reducing the Number of Data Clocks
        5. 7.4.5.5 Scrambling
        6. 7.4.5.6 Digital Interface Test Patterns and LVSD SYNC Functionality
          1. 7.4.5.6.1 Active Pattern
          2. 7.4.5.6.2 Synchronization Pattern
          3. 7.4.5.6.3 User-Defined Test Pattern
      6. 7.4.6 Power-Down Modes
      7. 7.4.7 Calibration Modes and Trimming
        1. 7.4.7.1 Foreground Calibration Mode
        2. 7.4.7.2 Background Calibration Mode
        3. 7.4.7.3 Low-Power Background Calibration (LPBG) Mode
      8. 7.4.8 Offset Calibration
      9. 7.4.9 Trimming
    5. 7.5 Programming
      1. 7.5.1 Using the Serial Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 78
        6. 7.5.1.6 Streaming Mode
        7. 7.5.1.7 80
    6. 7.6 Register Maps
      1. 7.6.1 SPI_REGISTER_MAP Registers
  9.   Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Wideband RF Sampling Receiver
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Input Signal Path
          2. 8.2.1.1.2 Clocking
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Calculating Values of AC-Coupling Capacitors
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Reconfigurable Dual-Channel, 2.5-GSPS or Single-Channel, 5.0-GSPS Oscilloscope
        1. 8.2.2.1 Design Requirements
          1. 8.2.2.1.1 Input Signal Path
          2. 8.2.2.1.2 Clocking
          3. 8.2.2.1.3 The ADC12DL3200
        2. 8.2.2.2 Application Curves
    3. 8.3 Initialization Set Up
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Sequencing
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. 8Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  11. 9Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics: AC Specifications (Dual-Channel Mode)

typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000), fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature range provided in the Recommended Operating Conditions table
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
FPBWFull-power input bandwidth
(–3 dB)(1)
Foreground calibration8.0GHz
Background calibration8.0
XTALKChannel-to-channel crosstalkAggressor = 400 MHz, –1 dBFS–91dB
Aggressor = 3000 MHz, –1 dBFS–59
Aggressor = 6000 MHz, –1 dBFS–59
CERCode error rateMaximum CER10-18errors/ sample
NSDNoise spectral density, no input signalMaximum full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xFFFF) setting, foreground calibration–151.1dBFS/Hz
Default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000) setting, foreground calibration–149.8
NFNoise figureMaximum full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xFFFF) setting, foreground calibration, no input, ZS = 100 Ω21.9dB
Default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000) setting, foreground calibration, no input, ZS = 100 Ω23.2
NOISEDCDC input noise standard deviationNo input, foreground calibration, excludes DC offset, includes fixed interleaving spur (FS/2 spur)2.9LSB
SNRSignal-to-noise ratio, large signal, excluding DC, HD2 to HD9 and interleaving spursfIN = 347 MHz, AIN = –1 dBFS57.1dBFS
fIN = 347 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration57.8
fIN = 997 MHz, AIN = –1 dBFS56.9
fIN = 2482 MHz, AIN = –1 dBFS5255.6
fIN = 2482 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration56.3
fIN = 4997 MHz, AIN = –1 dBFS52.8
fIN = 6397 MHz, AIN = –1 dBFS51.2
fIN = 8197 MHz, AIN = –1 dBFS49.7
SNRSignal-to-noise ratio, small signal, excluding DC, HD2 to HD9 and interleaving spursfIN = 347 MHz, AIN = –16 dBFS57.7dBFS
fIN = 997 MHz, AIN = –16 dBFS57.7
fIN = 2482 MHz, AIN = –16 dBFS57.7
fIN = 4997 MHz, AIN = –16 dBFS57.4
fIN = 6397 MHz, AIN = –16 dBFS57.1
fIN = 8197 MHz, AIN = –16 dBFS57.0
SINADSignal-to-noise and distortion ratio, large signal, excluding DC and FS/2 fixed spursfIN = 347 MHz, AIN = –1 dBFS56.2dBFS
fIN = 997 MHz, AIN = –1 dBFS55.1
fIN = 2482 MHz, AIN = –1 dBFS5053.7
fIN = 4997 MHz, AIN = –1 dBFS50.0
fIN = 6397 MHz, AIN = –1 dBFS47.9
fIN = 8197 MHz, AIN = –1 dBFS46.5
ENOBEffective number of bits, large signal, excluding DC and FS/2 fixed spursfIN = 347 MHz, AIN = –1 dBFS9.0bits
fIN = 997 MHz, AIN = –1 dBFS8.9
fIN = 2482 MHz, AIN = –1 dBFS8.08.6
fIN = 4997 MHz, AIN = –1 dBFS8.0
fIN = 6397 MHz, AIN = –1 dBFS7.7
fIN = 8197 MHz, AIN = –1 dBFS7.4
SFDRSpurious-free dynamic range, large signal, excluding DC and FS/2 fixed spursfIN = 347 MHz, AIN = –1 dBFS70dBFS
fIN = 347 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration69
fIN = 997 MHz, AIN = –1 dBFS66
fIN = 2482 MHz, AIN = –1 dBFS5664
fIN = 2482 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration61
fIN = 4997 MHz, AIN = –1 dBFS57
fIN = 6397 MHz, AIN = –1 dBFS56
fIN = 8197 MHz, AIN = –1 dBFS53
SFDRSpurious-free dynamic range, small signal, excluding DC and FS/2 fixed spursfIN = 347 MHz, AIN = –16 dBFS78dBFS
fIN = 997 MHz, AIN = –16 dBFS77
fIN = 2482 MHz, AIN = –16 dBFS75
fIN = 4997 MHz, AIN = –16 dBFS75
fIN = 6397 MHz, AIN = –16 dBFS78
fIN = 8197 MHz, AIN = –16 dBFS78
FS/2FS/2 fixed interleaving spur, independent of input signalNo input–76–55dBFS
HD22nd-order harmonicfIN = 347 MHz, AIN = –1 dBFS–72dBFS
fIN = 347 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration–73
fIN = 997 MHz, AIN = –1 dBFS–68
fIN = 2482 MHz, AIN = –1 dBFS–65–56
fIN = 2482 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration–63
fIN = 4997 MHz, AIN = –1 dBFS–65
fIN = 6397 MHz, AIN = –1 dBFS–59
fIN = 8197 MHz, AIN = –1 dBFS–65
HD33rd-order harmonicfIN = 347 MHz, AIN = –1 dBFS–74dBFS
fIN = 347 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration–71
fIN = 997 MHz, AIN = –1 dBFS–69
fIN = 2482 MHz, AIN = –1 dBFS–65–56
fIN = 2482 MHz, AIN = –1 dBFS, maximum FS_RANGE_A and FS_RANGE_B setting, foreground calibration–61
fIN = 4997 MHz, AIN = –1 dBFS–57
fIN = 6397 MHz, AIN = –1 dBFS–56
fIN = 8197 MHz, AIN = –1 dBFS–53
FS/2-FINFS/2-FIN interleaving spur, signal dependentfIN = 347 MHz, AIN = –1 dBFS–73dBFS
fIN = 997 MHz, AIN = –1 dBFS–73
fIN = 2482 MHz, AIN = –1 dBFS–74–56
fIN = 4997 MHz, AIN = –1 dBFS–73
fIN = 6397 MHz, AIN = –1 dBFS–72
fIN = 8197 MHz, AIN = –1 dBFS–66
SPURWorst harmonic 4th-order or higherfIN = 347 MHz, AIN = –1 dBFS–74dBFS
fIN = 997 MHz, AIN = –1 dBFS–72
fIN = 2482 MHz, AIN = –1 dBFS–74–60
fIN = 4997 MHz, AIN = –1 dBFS–73
fIN = 6397 MHz, AIN = –1 dBFS–72
fIN = 8197 MHz, AIN = –1 dBFS–70
IMD33rd-order intermodulationfIN = 347 MHz ± 5 MHz,
AIN = –7 dBFS per tone
–81dBFS
fIN = 997 MHz ± 5 MHz,
AIN = –7 dBFS per tone
–87
fIN = 2482 MHz ± 5 MHz,
AIN = –7 dBFS per tone
–72
fIN = 4997 MHz ± 5 MHz,
AIN = –7 dBFS per tone
–61
fIN = 6397 MHz ± 5 MHz,
AIN = –7 dBFS per tone
–53
fIN = 8197 MHz ± 5 MHz,
AIN = –7 dBFS per tone
–45
Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the –3-dB full-power input bandwidth.