SNAS468D September   2008  – December 2014 ADC161S626

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Converter Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Reference Input (VREF)
      2. 7.3.2 Sample and Hold
        1. 7.3.2.1 Input Settling
      3. 7.3.3 Serial Digital Interface
        1. 7.3.3.1 CS Input
        2. 7.3.3.2 SCLK Input
        3. 7.3.3.3 Data Output
    4. 7.4 Device Functional Modes
      1. 7.4.1 Differential Input Operation
      2. 7.4.2 Single-Ended Input Operation
      3. 7.4.3 Short Cycling
      4. 7.4.4 Burst Mode Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Analog and Digital Power Supplies
    2. 9.2 Voltage Reference
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Specification Definitions
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)(3)(2)

MIN MAX UNIT
Analog Supply Voltage VA −0.3 6.5 V
Digital I/O Supply Voltage VIO −0.3 6.5 V
Voltage on Any Analog Input Pin to GND −0.3 (VA + 0.3) V
Voltage on Any Digital Input Pin to GND −0.3 (VIO + 0.3) V
Input Current at Any Pin(4) –10 10 mA
Package Input Current(4) –50 50 mA
Power Consumption at TA = 25°C See (5)
Junction Temperature 150 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(3) All voltages are measured with respect to GND = 0 V, unless otherwise specified.
(4) When the input voltage at any pin exceeds the power supplies (that is, VIN < GND or VIN > VA), the current at that pin should be limited to 10 mA. The 50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to five.
(5) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (θJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax − TA)/θJA. The values for maximum power dissipation listed above will be reached only when the ADC161S626 is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1250
Machine model (MM) 250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Operating Temperature Range −40 85 °C
Supply Voltage, VA 4.5 5.5 V
Supply Voltage, VIO 2.7 5.5 V
Reference Voltage, VREF 0.5 VA V
Analog Input Pins Voltage Range 0 VA V
Differential Analog Input Voltage −VREF +VREF V
Input Common-Mode Voltage, VCM See Figure 44
Digital Input Pins Voltage Range 0 VIO V
Clock Frequency 1 5 MHz
(1) All voltages are measured with respect to GND = 0V, unless otherwise specified.

6.4 Thermal Information

THERMAL METRIC(1) ADC161S626 UNIT
DGS
10 PINS
RθJA Junction-to-ambient thermal resistance 163 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 57
RθJB Junction-to-board thermal resistance 82
ψJT Junction-to-top characterization parameter 6
ψJB Junction-to-board characterization parameter 81
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Converter Electrical Characteristics

The following specifications apply for VA = 4.5 V to 5.5 V, VIO = 2.7 V to 5.5 V, and VREF = 2.5 V to 5.5 V for fSCLK = 1 MHz to 4 MHz or VREF = 4.5 V to 5.5 V for fSCLK = 1 MHz to 5 MHz; fIN = 20 kHz, and CL = 25 pF, unless otherwise noted. Maximum and minimum values apply for TA = TMIN to TMAX; the typical values are tested at TA = 25°C.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
STATIC CONVERTER CHARACTERISTICS
Resolution with No Missing Codes 16 Bits
DNL Differential Non-Linearity −1 -0.5/+0.8 +2 LSB
INL Integral Non-Linearity −2 ±0.8 +2 LSB
OE Offset Error VREF = 2.5 V −1 −0.1 +1 mV
VREF = 5 V −0.4 mV
OEDRIFT Offset Error Temperature Drift VREF = 2.5 V 3.7 µV/°C
VREF = 5 V 2.5 µV/°C
FSE Positive Full-Scale Error –0.03 −0.003 0.03 %FS
Negative Full-Scale Error –0.03 −0.002 0.03 %FS
GE Positive Gain Error –0.02 −0.002 0.02 %FS
Negative Gain Error –0.02 −0.0001 0.02 %FS
GEDRIFT Gain Error Temperature Drift 0.3 ppm/°C
DYNAMIC CONVERTER CHARACTERISTICS
SINAD Signal-to-Noise Plus Distortion Ratio VREF = 2.5 V 85 88 dBc
VREF = 4.5 V to 5.5 V 89 93.0 dBc
SNR Signal-to-Noise Ratio VREF = 2.5 V 85 88 dBc
VREF = 4.5 V to 5.5 V 89 93.2 dBc
THD Total Harmonic Distortion VREF = 2.5 V −104 dBc
VREF = 4.5 V to 5.5 V −106 dBc
SFDR Spurious-Free Dynamic Range VREF = 2.5 V 108 dBc
VREF = 4.5 V to 5.5 V 111 dBc
ENOB Effective Number of Bits VREF = 2.5 V 13.8 14.3 bits
VREF = 4.5 V to 5.5 V 14.5 15.2 bits
FPBW −3 dB Full Power Bandwidth Output at 70.7%FS with FS Differential Input 26 MHz
ANALOG INPUT CHARACTERISTICS
VIN Differential Input Range −VREF +VREF V
IINA Analog Input Current CS high –1 1 µA
VREF = 5 V, VIN = 0 V, fS = 50 kSPS 3.2 nA
VREF = 5 V, VIN = 0 V, fS = 200 kSPS 10.3 nA
CINA Input Capacitance (+IN or −IN) In Acquisition Mode 20 pF
In Conversion Mode 4 pF
CMRR Common Mode Rejection Ratio See the Specification Definitions for the test condition 85 dB
DIGITAL INPUT CHARACTERISTICS
VIH Input High Voltage fIN = 0 Hz 0.7 x VIO 1.9 V
VIL Input Low Voltage fIN = 0 Hz 1.7 0.3 x VIO V
IIND Digital Input Current –1 1 µA
CIND Input Capacitance 4 pF
DIGITAL OUTPUT CHARACTERISTICS
VOH Output High Voltage ISOURCE = 200 µA VIO − 0.2 VIO − 0.03 V
ISOURCE = 1 mA VIO − 0.09 V
VOL Output Low Voltage ISOURCE = 200 µA 0.01 0.4 V
ISOURCE = 1 mA 0.07 V
IOZH, IOZL TRI-STATE Leakage Current Force 0V or VA –1 1 µA
COUT TRI-STATE Output Capacitance Force 0V or VA 4 pF
Output Coding Binary 2's Complement
POWER SUPPLY CHARACTERISTICS
VA Analog Supply Voltage Range 4.5 5 5.5 V
VIO Digital Input/Output Supply Voltage Range  (2) 2.7 3 5.5 V
VREF Reference Voltage Range 0.5 5 VA V
IVA (Conv) Analog Supply Current, Conversion Mode VA = 5 V, fSCLK = 4 MHz, fS = 200 kSPS 1060 µA
VA = 5 V, fSCLK = 5 MHz, fS = 250 kSPS 1160 1340 µA
IVIO (Conv) Digital I/O Supply Current, Conversion Mode VIO = 3 V, fSCLK = 4 MHz, fS = 200 kSPS 80 µA
VIO = 3 V, fSCLK = 5 MHz, fS = 250 kSPS 100 µA
IVREF (Conv) Reference Current, Conversion Mode VA = 5 V, fSCLK = 4 MHz, fS = 200 kSPS 80 µA
VA = 5 V, fSCLK = 5 MHz, fS = 250 kSPS 100 170 µA
IVA (PD) Analog Supply Current, Power Down Mode (CS high) fSCLK = 5 MHz, VA = 5 V 7 µA
fSCLK = 0 Hz, VA = 5 V(3) 2 3 µA
IVIO (PD) Digital I/O Supply Current, Power Down Mode (CS high) fSCLK = 5 MHz, VIO = 3 V 1 µA
fSCLK = 0 Hz, VIO = 3 V(3) 0.3 0.5 µA
IVREF (PD) Reference Current, Power Down Mode (CS high) fSCLK = 5 MHz, VREF = 5 V 0.5 µA
fSCLK = 0 Hz, VREF = 5 V(3) 0.5 0.7 µA
PWR (Conv) Power Consumption, Conversion Mode VA = 5 V, fSCLK = 4 MHz, fS = 200 kSPS, and fIN = 20 kHz, 5.3 mW
VA = 5 V, fSCLK = 5 MHz, fS = 250 kSPS, and fIN = 20 5.8 6.7 mW
PWR (PD) Power Consumption, Power Down Mode (CS high) fSCLK = 5 MHz, VA = 5.0 V(3) 35 µW
fSCLK = 0 Hz, VA = 5.0 V(3) 10 15 µW
PSRR Power Supply Rejection Ratio See the Specification Definitions for the test condition −78 dB
AC ELECTRICAL CHARACTERISTICS
fSCLK Maximum Clock Frequency 1 5 MHz
fS Maximum Sample Rate (4) 50 250 kSPS
tACQ Acquisition/Track Time 600 ns
tCONV Conversion/Hold Time 17 SCLK cycles
tAD Aperture Delay See the Specification Definitions 6 ns
(1) Typical values are at TJ = 25°C and represent most likely parametric norms. Test limits are specified to AOQL (Average Outgoing Quality Level).
(2) The value of VIO is independent of the value of VA. For example, VIO could be operating at 5.5 V while VA is operating at 4.5V or VIO could be operating at 2.7 V while VA is operating at 5.5 V.
(3) This parameter is ensured by design and/or characterization and is not tested in production.
(4) While the maximum sample rate is fSCLK / 20, the actual sample rate may be lower than this by having the CS rate slower than fSCLK / 20.

6.6 Timing Requirements

The following specifications apply for VA = 4.5 V to 5.5 V, VIO = 2.7 V to 5.5 V, VREF = 2.5 V to 5.5 V, fSCLK = 1Mz to 5MHz, and CL = 25 pF, unless otherwise noted. Maximum and minimum values apply for TA = TMIN to TMAX; the typical values are tested at TA = 25°C.(1)
MIN NOM MAX UNIT
tCSS CS Setup Time prior to an SCLK rising edge 8 3 ns
tCSH CS Hold Time after an SCLK rising edge 8 3
tDH DOUT Hold Time after an SCLK falling edge 6 11 ns
tDA DOUT Access Time after an SCLK falling edge 18 41 ns
tDIS DOUT Disable Time after the rising edge of CS(2) 20 30 ns
tCS Minimum CS Pulse Width 20 ns
tEN DOUT Enable Time after the 2nd falling edge of SCLK 20 70 ns
tCH SCLK High Time 20 ns
tCL SCLK Low Time 20 ns
tr DOUT Rise Time 7 ns
tf DOUT Fall Time 7 ns
(1) Typical values are at TJ = 25°C and represent most likely parametric norms. Test limits are specified to AOQL (Average Outgoing Quality Level).
(2) tDIS is the time for DOUT to change 10% while being loaded by the Timing Test Circuit.
30073401.gifFigure 1. ADC161S626 Single Conversion Timing Diagram
30073408.gifFigure 2. Timing Test Circuit
30073406.gifFigure 3. DOUT Rise and Fall Times
30073411.gifFigure 4. DOUT Hold and Access Times
30073410.gifFigure 5. Valid CS Assertion Times
30073412.gifFigure 6. Voltage Waveform for tDIS

6.7 Typical Characteristics

VA = VIO = VREF = 5 V, fSCLK = 5 MHz, fSAMPLE = 250 kSPS, TA = +25°C, and fIN = 20 kHz unless otherwise stated.
30073421.pngFigure 7. DNL - 250 kSPS
30073423.pngFigure 9. DNL vs. VA
30073418.pngFigure 11. DNL vs. VREF
30073425.pngFigure 13. DNL vs. SCLK Frequency
30073429.pngFigure 15. DNL vs. Temperature
30073433.pngFigure 17. SINAD vs. VA
30073437.pngFigure 19. SINAD vs. VREF
30073441.pngFigure 21. SINAD vs. SCLK Frequency
30073449.pngFigure 23. SINAD vs. INPUT Frequency
30073472.pngFigure 25. SINAD vs. Temperature
30073435.pngFigure 27. VA Current vs. VA
30073454.pngFigure 29. VA Current vs. Temperature
30073452.pngFigure 31. VREF Current vs. SCLK Frequency
30073444.pngFigure 33. VIO Current vs. VIO
30073443.pngFigure 35. VIO Current vs. Temperature
30073475.pngFigure 37. Analog Input CMRR vs. Frequency
30073484.pngFigure 39. Noise Histogram at Code Transition
30073422.pngFigure 8. INL - 250 kSPS
30073424.pngFigure 10. INL vs. VA
30073419.pngFigure 12. INL vs. VREF
30073426.pngFigure 14. INL vs. SCLK Frequency
30073430.pngFigure 16. INL vs. Temperature
30073432.pngFigure 18. THD vs. VA
30073436.pngFigure 20. THD vs. VREF
30073440.pngFigure 22. THD vs. SCLK Frequency
30073448.pngFigure 24. THD vs. INPUT Frequency
30073471.pngFigure 26. THD vs. Temperature
30073455.pngFigure 28. VA Current vs. SCLK Frequency
30073434.pngFigure 30. VREF Current vs. VREF
30073451.pngFigure 32. VREF Current vs. Temperature
30073442.pngFigure 34. VIO Current vs. SCLK Frequency
30073414.pngFigure 36. Spectral Response - 250 kSPS
30073483.pngFigure 38. Noise Histogram at Code Center