SNVSA18C April   2014  – August 2014 ADC16DX370

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Handling Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Converter Performance Characteristics
    6. 6.6  Power Supply Electrical Characteristics
    7. 6.7  Analog Interface Electrical Characteristics
    8. 6.8  CLKIN, SYSREF, SYNCb Interface Electrical Characteristics
    9. 6.9  Serial Data Output Interface Electrical Characteristics
    10. 6.10 Digital Input Electrical Interface Characteristics
    11. 6.11 Timing Requirements
    12. 6.12 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Over-Range Functional Characteristics
    2. 7.2 Input Clock Divider and Clock Phase Adjustment Functional Characteristics
    3. 7.3 JESD204B Interface Functional Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Amplitude and Phase Imbalance Correction of Differential Analog Input
      2. 8.3.2  DC Offset Correction
      3. 8.3.3  Over-Range Detection
      4. 8.3.4  Input Clock Divider
      5. 8.3.5  SYSREF Offset Feature and Detection Gate
      6. 8.3.6  Sampling Instant Phase Adjustment
      7. 8.3.7  Serial Differential Output Drivers
        1. 8.3.7.1 De-Emphasis Equalization
      8. 8.3.8  ADC Core Calibration
      9. 8.3.9  Data Format
      10. 8.3.10 JESD204B Supported Features
      11. 8.3.11 Transport Layer Configuration
        1. 8.3.11.1 Lane Configuration
        2. 8.3.11.2 Frame Format
        3. 8.3.11.3 ILA Information
      12. 8.3.12 Test Pattern Sequences
      13. 8.3.13 JESD204B Link Initialization
      14. 8.3.14 SPI
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down and Sleep Modes
    5. 8.5 Register Map
      1. 8.5.1 Register Descriptions
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Analog Input Considerations
        1. 9.1.1.1 Differential Analog Inputs and Full Scale Range
        2. 9.1.1.2 Analog Input Network Model
        3. 9.1.1.3 Input Bandwidth
        4. 9.1.1.4 Driving the Analog Input
        5. 9.1.1.5 Clipping and Over-Range
      2. 9.1.2 CLKIN, SYSREF, and SYNCb Input Considerations
        1. 9.1.2.1 Driving the CLKIN+ and CLKIN- Input
        2. 9.1.2.2 Clock Noise and Edge Rate
        3. 9.1.2.3 Driving the SYSREF Input
        4. 9.1.2.4 SYSREF Signaling
        5. 9.1.2.5 SYSREF Timing
        6. 9.1.2.6 Effectively Using the SYSREF Offset and Detection Gate Features
        7. 9.1.2.7 Driving the SYNCb Input
      3. 9.1.3 Output Serial Interface Considerations
        1. 9.1.3.1 Output Serial-Lane Interface
        2. 9.1.3.2 Voltage Swing and De-Emphasis Optimization
        3. 9.1.3.3 Minimizing EMI
      4. 9.1.4 JESD204B System Considerations
        1. 9.1.4.1 Frame and LMFC Clock Alignment Procedure
        2. 9.1.4.2 Link Interruption
        3. 9.1.4.3 Synchronization Requests and SYNCb Alignment in Multi-Device Systems
        4. 9.1.4.4 Clock Configuration Examples
        5. 9.1.4.5 Configuring the JESD204B Receiver
      5. 9.1.5 SPI
    2. 9.2 Typical Application
      1. 9.2.1 High-IF Sampling Receiver
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Design Procedure
        3. 9.2.1.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Design
    2. 10.2 Decoupling
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Specification Definitions
      2. 12.1.2 JESD204B Definitions
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Supply Voltage: VA3.0 –0.3 4.2 V
Supply Voltage: VA1.8 –0.3 2.35 V
Supply Voltage: VA1.2, VD1.2 –0.3 1.55 V
Voltage at VINA+, VINA– VCMA – 1.0 VCMA + 0.75 V
Voltage at VINB+, VINB– VCMB – 1.0 VCMB + 0.75 V
Voltage at VCMA, VCMB –0.3 VA3.0 + 0.3, not to exceed 4.2 V V
Voltage at OVRA, ORVB –0.3 VA1.8 + 0.3 V
Voltage at SCLK, SDI, CSb –0.3 VA3.0 + 0.3, not to exceed 4.2 V V
Voltage at SDO –0.3 VSPI + 0.3, not to exceed 4.2 V V
Voltage at CLKIN+, CLKIN–, SYSREF+, SYSREF– –0.3 1.55 V
Voltage at SYNC+, SYNC– –0.3 VBP2.5 + 0.3 V
Voltage at BP2.5 –0.3 3.2 V
Voltage at SA0+, SA0–, SA1+, SA1–, SB0+, SB0–, SB1+, SB1– –0.3 VBP2.5 + 0.3 V
Input current at any pin(3) 5 mA
TJ Operating junction temperature(2) 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Prolonged use at this temperature may increase the device failure-in-time (FIT) rate.
(3) When the input voltage at any pin exceeds the VA3.0 power supply (that is VIN > VA3.0 or VIN < AGND) the current at that pin should be limited to ±5 mA. The ±50-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of ±5 mA to 10 pins.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD)(1) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2) –1000 1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(3) –250 250 V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device.
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Operation of the device beyond the recommended operating ratings is not recommended as it may degrade the device lifetime.
MIN MAX UNIT
Specified temperature –40 85 °C
VA3.0 3.0-V analog supply voltage 2.85 3.45 V
VA1.8 1.8-V analog supply voltage 1.7 1.9 V
VA1.2 1.2-V analog supply voltage 1.15 1.25 V
VD1.2 1.2-V digital supply voltage 1.15 1.25 V
CLKIN duty cycle 30% 70%
TJ Operating junction temperature 105 °C

6.4 Thermal Information

THERMAL METRIC(1) WQFN (56 PINS) UNIT
RθJA Thermal resistance, junction to ambient 24.9 °C/W
RθJC(top) Thermal resistance, junction to package top 8.6
RθJB Thermal resistance, junction to board 3.0
φJT Characterization parameter, junction to package top 0.2
φJB Characterization parameter, junction to board 2.9
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Converter Performance Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS; external differential resistive termination at ADC input is 66 Ω. Typical values are at TA = 25°C, unless otherwise noted.
PARAMETER DESCRIPTION AND TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION Bit resolution of ADC core 16 bits
SNR Signal-to-noise ratio, integrated across entire Nyquist bandwidth dBFS
Input = 46 MHz, –3 dBFS 69.8
Input = 150 MHz, –3 dBFS TA = 25°C 69.6
TA = TMIN to TMAX 68.7
Input = 231 MHz, –3 dBFS 69.4
Input = 325 MHz, Ain = –3 dBFS 69
Input = 325 MHz, Ain = –40 dBFS 70
SINAD Signal-to-noise and distortion ratio, integrated across Nyquist bandwidth dBFS
Input = 46 MHz, –3 dBFS 69.5
Input = 150 MHz, –3 dBFS 69.4
Input = 231 MHz, –3 dBFS 69.1
Input = 325 MHz, –3 dBFS 68.8
Input = 325 MHz, –40 dBFS 70
NSD Noise spectral density, average NSD across Nyquist bandwidth dBFS/Hz
Input = 46 MHz, –3 dBFS –152.5
Input = 150 MHz, –3 dBFS TA = 25°C –152.3
TA = TMIN to TMAX –151.4
Input = 231 MHz, –3 dBFS –152.1
Input = 325 MHz, –3 dBFS –151.7
Input = 325 MHz, –40 dBFS –152.7
SFDR Spurious free dynamic range, single tone dBFS
Input = 46 MHz, –3 dBFS 88
Input = 150 MHz, –3 dBFS TA = 25°C 88
TA = TMIN to TMAX 80
Input = 231 MHz, –3 dBFS 85
Input = 325 MHz, –3 dBFS 85
HD2 2nd order harmonic distortion dBFS
Input = 46 MHz, –3 dBFS –93
Input = 150 MHz, –3 dBFS TA = 25°C –89
TA = TMIN to TMAX –80
Input = 231 MHz, –3 dBFS –90
Input = 325 MHz, –3 dBFS –89
HD3 3rd order harmonic distortion dBFS
Input = 46 MHz, –3 dBFS –88
Input = 150 MHz, –3 dBFS TA = 25°C –88
TA = TMIN to TMAX –80
Input = 231 MHz, –3 dBFS –85
Input = 325 MHz, –3 dBFS –85
SPUR Largest spurious tone, not including DC, HD2 or HD3 dBFS
Input = 46 MHz, –3 dBFS –90
Input = 150 MHz, –3 dBFS TA = 25°C –90
TA = TMIN to TMAX –87
Input = 231 MHz, –3 dBFS –90
Input = 325 MHz, –3 dBFS –90
IMD3 Third-order intermodulation, dual tone dBFS
Tone 1 = 145 MHz, –10 dBFS
Tone 2 = 155 MHz, –10 dBFS
–102
ENOB Effective number of bits
Input = 150 MHz, –3 dBFS
11.2 bits
DNL DIfferential nonlinearity 0.9, –0.65 LSB
INL Integral nonlinearity ±4.5 LSB

6.6 Power Supply Electrical Characteristics(1)

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS. Typical values are at TA = 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IA3.0 VA3.0 supply current consumption Normal operation, single data lane per channel 230 mA
Normal operation, dual data lane per channel 255
Power down mode 8.7
IA1.8 VA1.8 supply current consumption Normal operation 360 mA
Power down mode 3.6
IA1.2 VA1.2 supply current consumption Normal operation 172 mA
Power down mode 3.3
ID1.2 VD1.2 supply current consumption Normal operation 52 mA
Power down mode 3.3
PT Total power consumption of the VA3.0 , VA1.8 , VA1.2 , VD1.2 supplies
Normal operation, single serial lane per channel TA = 25°C 1607 mW
TA = TMIN to TMAX 1800
Power consumption during power-down state, external clock active 30
Power consumption during sleep state, external clock active 30
VBP2.5 Voltage at the BP2.5 pin 2.65 V
Supply sensitivity to noise
Power of spectral spur resulting from a 100-mV sinusoidal signal modulating a supply at 500 kHz. Analog input is a –3 dBFS 150-MHz single tone. In all cases, the spur appears as part of a pair symmetric about the fundamental that scales proportionally with the fundamental amplitude.
dBFS
VA3.0 –72.5
VA1.8 –58.0
VA1.2 –37.7
VD1.2 –78
(1) Power values indicate consumption during normal conversion assuming JESD204 link establishment

6.7 Analog Interface Electrical Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS; external differential resistive termination at ADC input is 66 Ω. Typical values are at TA = 25°C.
PARAMETER DESCRIPTION AND TEST CONDITIONS MIN TYP MAX UNIT
FSR Full scale range
Differential peak-to-peak
1.7 Vpp
GVAR Gain variation
Variation of input voltage to output code gain between different parts, part-to-part or channel-to-channel
±0.07 dB
VOFF Input referred voltage offset ±13 mV
BW3dB 3-dB bandwidth
Frequency at which the voltage input to digital output response deviates by 3 dB compared to low frequencies for a low impedance differential signal applied at the input pins. Includes 0.5-nH parasitic inductance in series with each pin of the differential analog input.
800 MHz
RIN Input termination resistance
Differential
200 Ω
CIN Input capacitance, differential 3.7 pF
VCMA, VCMB Input common mode voltage reference voltage at the VCMA or VCMB pins
Varies with temperature
1.6 V
IVCM Input common mode voltage reference current sourcing or sinking on VCMA or VCMB pins 1 mA
VCM-OFF Input common mode voltage offset range
Allowable difference between the common mode applied to the analog input of a particular channel and the bias voltage at the respective common mode VCM bias pin (VCMA or VCMB)
±50 mV

6.8 CLKIN, SYSREF, SYNCb Interface Electrical Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS. Typical values are at TA = 25°C.
PARAMETER DESCRIPTION AND TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUT CHARACTERISTICS (CLKIN)
VID Input differential voltage(1)(3)
Differential peak voltage
250 1000 mV
dVSS/dt Recommended minimum edge slew rate at the zero crossing(1)
2 5 V/ns
VIS-BIAS Input offset voltage internal bias (1)
Internally biased
0.5 V
VIS-IN Externally applied input offset voltage(3)
Allowable common mode voltage range for DC coupled interfaces
0.4 0.5 0.6 V
Zrdiff Differential termination resistance at DC(2) 130 Ω
Ztt Common-mode bias source impedance(2) 11
CT Differential termination capacitance 1.5 pF
DIGITAL INPUT CHARACTERISTICS (SYSREF)
VID Input differential voltage (1)(3)
Differential peak voltage
250 1000 mV
VIS-BIAS Input offset voltage bias (1)
Internally biased
0.5 V
VIS-IN Externally applied input offset voltage(3)
Allowable common mode voltage range for DC coupled interfaces
0.4 0.5 0.6 V
Zrdiff Differential termination resistance at DC(2) 2
Ztt Common-mode bias source impedance(2) 11
CT Differential termination capacitance(2) 0.8 pF
DIGITAL INPUT CHARACTERISTICS (SYNCb)
VID Input differential voltage (1)(3)
Differential peak voltage
350 mV
VIS-IN Externally applied input offset voltage(1)(3) 0.5 1.2 2 V
Zrdiff Differential termination resistance(2) 100 Ω
CT Differential termination capacitance(2) 1 pF
(1) Specification applies to the electrical level diagram of Figure 1
(2) Specification applies to the electrical circuit diagram of Figure 2
(3) The voltage present at the pins should not exceed Absolute Maximum limits
ADC16DX370 Diff_Input_Electrical.gif Figure 1. Electrical Level Diagram for Differential Input Signals
ADC16DX370 Diff_Input_Circuit.gif Figure 2. Simplified Electrical Circuit Diagram for Differential Input Signals

6.9 Serial Data Output Interface Electrical Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS. Typical values are at TA = 25°C.
PARAMETER DESCRIPTION AND TEST CONDITIONS MIN TYP MAX UNIT
SERIAL LANE OUTPUT CHARACTERISTICS (SA0, SA1, SB0, SB1)
VOD Output differential voltage(1)
Differential peak-peak values. Assumes ideal 100-Ω load. De-emphasis disabled.
Configurable via SPI
580
680
760
860
960
1060
1140
1240
mV
Zddiff Differential output impedance at DC(2) 100 Ω
RLddiff Differential output return loss magnitude
Relative to 100 Ω; For frequencies up to 5.5 GHz
–11 dB
Rdeemp Transmitter de-emphasis values
VOD configured to default value.
0
0.4
1.2
2.1
2.8
3.8
4.8
6.8
dB
(1) Specification applies to the electrical level diagram of Figure 3
(2) Specification applies to the electrical circuit diagram of Figure 4
ADC16DX370 Diff_Output_Electrical.gif Figure 3. Electrical Level Diagram for Differential Output Signals
ADC16DX370 Diff_Output_Circuit.gif Figure 4. Electrical Circuit Diagram for Differential Output Signals

6.10 Digital Input Electrical Interface Characteristics

Unless otherwise noted, these specifications apply for VA3.0= 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS. Typical values are at TA = 25°C.
PARAMETER DESCRIPTION AND TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUT CHARACTERISTICS (SDI, SCLK, CSB)
VIH Logical 1 input voltage(1)
Inputs are compatible with 1.2-V up to 3.0-V logic.
0.9 V
VIL Logical 0 input voltage(1) 0.3 V
IIN0 Logic low input current 0.5 uA
IIN1 Logic high input current 0.5 uA
CIN Input capacitance 2 pF
DIGITAL OUTPUT CHARACTERISTICS (SDO)
VOH Logical 1 output voltage(1)(2)
VSPI = 1.2, 1.8, 2.5, or 3 V ; Configurable via SPI
VSPI – 0.3 VSPI(2) V
VOL Logical 0 output voltage(1)(2) 0 0.3 V
+ISC Logic high short circuit current 9 mA
–ISC Logic low short circuit current –10 mA
DIGITAL OUTPUT CHARACTERISTICS (OVRA/TRIGRDY, OVRB)
VOH Logical 1 output voltage(1) 1.5 1.8 V
VOL Logical 0 output voltage(1) 0 0.3 V
+ISC Logic high short circuit current 17.7 mA
–ISC Logic low short circuit current –15 mA
DIGITAL INPUT CHARACTERISTICS (TRIGGER)
VIH Logical 1 input voltage(1) 1.5 V
VIL Logical 0 input voltage(1) 0.3 V
IIN0 Logic low input current 0.5 uA
IIN1 Logic high input current 0.5 uA
CIN Input capacitance 3 pF
(1) Specification applies to the electrical level diagram of Figure 5.
(2) The SPI_CFG register must be changed to a supported output logic level after power up and before a read command is executed. Until that time, the output voltage on SDO may be as high as the VA3.0 supply during a read command. The SDO output is high-Z at all times except during a read command.
ADC16DX370 CMOS_Logic_Electrical.gif Figure 5. Electrical Level Diagram for Single-ended Digital Inputs and Outputs

6.11 Timing Requirements

Unless otherwise noted, these specifications apply for VA3.0= 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS. Typical values are at TA = 25°C.
PARAMETER DESCRIPTION MIN TYP MAX UNIT
ADC SAMPLING INSTANT TIMING CHARACTERISTICS
FS Sampling rate
Equal to FCLKIN / CLKDIV
50 370 MSPS
FCLKIN Input Clock Frequency at CLKIN Inputs MHz
CLKDIV = 1 50 370
CLKDIV = 2 100 740
CLKDIV = 4 200 1480
CLKDIV = 8 400 2000
tLAT-ADC ADC core latency
Delay from a reference sampling instant to the boundary of the internal LMFC where the reference sample is the first sample of the next transmitted multi-frame. Coarse sampling phase adjust disabled. In this device, the frame clock period is equal to the sampling clock period.
12.5 Frame clock cycles
tJ Additive sampling aperture jitter
Depends on input CLKIN differential edge rate at the zero crossing, dVSS/dt. Tested with 5 V/ns edge rate.
fs
CLKDIV = 1 70
CLKDIV = 2, 4, coarse phase disabled 80
CLKDIV = 4, coarse phase enabled. Typical worst-case value across all coarse phase configuration possibilities. 85
OVER-RANGE INTERFACE TIMING CHARACTERISTICS (OVRA, OVRB)
tODH OVR assertion delay
Delay between an over-range value sampled and OVR asserted; Coarse clock phase adjust disabled.
7.5 Frame clock cycles
tODL OVR de-assertion delay
Delay between first under-range value sampled until OVR de-assertion; Configurable via SPI.
tODH + 0 tODH + 15 Frame clock cycles
SYSREF TIMING CHARACTERISTICS
tPH-SYS SYSREF assertion duration
Required duration of SYSREF assertion after rising edge event
2 Frame clock cycles
tPL-SYS SYSREF de-assertion duration
Required duration of SYSREF de-assertion after falling edge event
2 Frame clock cycles
tS-SYS SYSREF setup time
Relative to CLKIN rising edge
320 ps
tH-SYS SYSREF hold time
Relative to CLKIN rising edge
80 ps
JESD204B INTERFACE LINK TIMING CHARACTERISTICS
tD-LMFC SYSREF to LMFC delay
Functional delay between SYSREF assertion latched and LMFC frame boundary. Depends on CLKDIV setting.
CLKIN cycles
(Frame clock cycles)
CLKDIV = 1 3.5
(3.5)
CLKDIV = 2 8
(4)
CLKDIV = 4 15
(3.75)
CLKDIV = 8 29
(3.625)
tD-K28 LMFC to K28.5 delay
Functional delay between the start of the first K28.5 frame during Code Group Synchronization at the serial output and the preceding LMFC frame boundary.
5 6 7 Frame clock cycles
tD-ILA LMFC to ILA delay
Functional delay between the start of the first ILA frame during Initial Lane Synchronization at the serial output and the preceding LMFC frame boundary
5 6 7
tD-DATA LMFC to valid data delay
Functional delay between the start of the first valid data frame at the serial output and the preceding LMFC frame boundary.
5 6 7
tS-SYNCb-F SYNCb setup time
Required SYNCb setup time relative to the internal LMFC boundary.
3 Frame clock cycles
tH-SYNCb-F SYNCb hold time
Required SYNCb hold time relative to the internal LMFC boundary .
0
tH-SYNCb SYNCb assertion hold time
Required SYNCb hold time after assertion before de-assertion to initiate a link re-synchronization.
4
tILA ILA duration
Duration of the ILA sequence .
4 Multi-frame clock cycles
SERIAL OUTPUT DATA TIMING CHARACTERISTICS
FSR Serial bit rate
Single- or dual-lane mode
1 7.4 Gb/s
UI Unit Interval
7.4 Gb/s Data Rate
135.1 ps
DJ Deterministic jitter
Includes periodic jitter (PJ), data dependent jitter (DDJ), duty cycle distortion (DCD), and inter-symbol interference (ISI); 7.4 Gb/s data rate.
0.047
(6.33)
p-p UI
(p-p ps)
RJ Random jitter
Assumes BER of 1e-15 (Q = 15.88); 7.4 Gb/s data rate
0.156
(1.35)
p-p UI
(rms ps)
TJ Total jitter
Sum of DJ and RJ. Assumes BER of 1e-15 (Q = 15.88); 7.4 Gb/s data rate.
0.206
(27.77)
p-p UI
(p-p ps)
SPI BUS TIMING CHARACTERISTICS(1)
ƒSCLK Serial clock frequency
fSCLK = 1 / tP
20 MHz
tPH SCLK pulse width – high
% of SCLK period
25% 75%
tPL SCLK pulse width – low
% of SCLK period
25% 75%
tSSU SDI input data setup time 5 ns
tSH SDI input data hold time 5 ns
tODZ SDO output data driven-to-3-state time 25 ns
tOZD SDO output data 3-state-to-driven time 25 ns
tOD SDO output data delay time 30 ns
tCSS CSB setup time 5 ns
tCSH CSB hold time 5 ns
tIAG Inter-access gap
Minimum time CSB must be de-asserted between accesses
5 ns
(1) All timing specifications for the SPI given for VSPI = 1.8-V logic levels and a 5-pF capacitive load on the SDO pin. Timing specification may require larger margins for VSPI= 1.2 V.
ADC16DX370 Sampling_Timing_Diagram.gif Figure 6. Sample to Data Timing Diagram
ADC16DX370 SPI_Timing_Diagram.gif Figure 7. SPI Timing Diagram
ADC16DX370 OVR_Timing.gif Figure 8. Over-Range Timing Diagram
ADC16DX370 JESD204_Synchronization_Timing.gif Figure 9. JESD204B Interface Link Initialization Timing Diagram

For more information, see Functional Block Diagram.

6.12 Typical Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = VD1.2 = 1.2 V; FCLKIN = FS = 370 MSPS; 150-MHz input frequency; –3-dBFS input power. Typical values are at TA = 25°C.
ADC16DX370 SNR_SINAD_SFDR_vs_Fin.png
Figure 10. SNR, SINAD, SFDR vs Input Frequency
ADC16DX370 SNR_SINAD_SFDR_vs_Fs.png
Figure 12. SNR, SINAD, SFDR vs Sampling Rate
ADC16DX370 SNR_SINAD_SFDR_vs_Temp.png
Figure 14. SNR, SINAD, SFDR vs Temperature
ADC16DX370 H2_H3_SPUR_THD_vs_Pin.png
Figure 16. HD2, HD3, SPUR, THD vs Input Power
ADC16DX370 H2_H3_SPUR_vs_Temp.png
Figure 18. HD2, HD3, SPUR, THD vs Temperature
ADC16DX370 D017_SNVSA18.gif
SNR = 68.49 dBFS SFDR = 83.21 dBFS
Figure 20. 1-Tone Spectrum (324 MHz)
ADC16DX370 CMRR_vs_Fin_.png
Figure 22. CMRR vs Input Frequency (Small Signal,
–24-dBm Input)
ADC16DX370 Power_vs_Temp.gif
Figure 24. Power vs Temperature
ADC16DX370 Current_vs_FS.png
Figure 26. Current vs Sampling Rate
ADC16DX370 eye_mask_3p7G_TX_snvs990.png
Figure 28. Output Serial Lane Eye Diagram at 3.7 Gb/s
ADC16DX370 SNR_SINAD_SFDR_vs_Pin.png
Figure 11. SNR, SINAD, SFDR vs Input Power
ADC16DX370 SNR_SINAD_SFDR_vs_Supp.png
Nominal Supplies: VA3.0 = 3.0 V VA1.2 = VD1.2 = 1.2 V
VA1.8 = 1.8 V
Figure 13. SNR, SINAD, SFDR vs Supply
ADC16DX370 H2_H3_SPUR_THD_vs_Fin.png
Figure 15. HD2, HD3, SPUR, THD vs Input Frequency
ADC16DX370 H2_H3_SPUR_vs_Supply.png
Nominal Supplies: VA3.0 = 3.0 V VA1.2 = VD1.2 = 1.2 V
VA1.8 = 1.8 V
Figure 17. HD2, HD3, and SPUR vs Supply
ADC16DX370 D016_SNVSA18.gif
SNR = 69.5 dBFS SFDR = 87.0 dBFS
Figure 19. 1-Tone Spectrum
ADC16DX370 D018_SNVSA18.gif
SNR = 69.5 dBFS SFDR = 94 dBFS IMD3 = –100 dBFS
Figure 21. 2-Tone Spectrum (–10dBFS/tone,
145 and 155 MHz)
ADC16DX370 Crosstalk.png
Figure 23. Crosstalk vs Input Frequency
ADC16DX370 Power_vs_FS.gif
Figure 25. Power vs Sampling Rate
ADC16DX370 eye_mask_7p4G_TX_snvs990.png
Figure 27. Output Serial Lane Eye Diagram at 7.4 Gb/s
ADC16DX370 eye_mask_7p4G_RX_snvs990.png
Figure 29. Transmitted Eye at Output of 20-inch, 5-mil. FR4 Microstrip at 7.4 Gb/s With Optimized De-Emphasis