SBAS500B june   2022  – august 2023 ADC32RF54 , ADC32RF55

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Consumption
    6. 6.6  Electrical Characteristics - DC Specifications
    7. 6.7  Electrical Characteristics - ADC32RF54 AC Specifications (Dither DISABLED)
    8. 6.8  Electrical Characteristics - ADC32RF54 AC Specifications (Dither ENABLED)
    9. 6.9  Electrical Characteristics - ADC32RF55 AC Specifications (Dither DISABLED)
    10. 6.10 Electrical Characteristics - ADC32RF55 AC Specifications (Dither ENABLED)
    11. 6.11 Timing Requirements
    12. 6.12 Typical Characteristics - ADC32RF54
    13. 6.13 Typical Characteristics - ADC32RF55
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs
        1. 7.3.1.1 Input Bandwidth and Full-Scale
        2. 7.3.1.2 Input Imbalance
        3. 7.3.1.3 Overrange Indication
        4. 7.3.1.4 Analog out-of-band dither
      2. 7.3.2 Sampling Clock Input
      3. 7.3.3 SYSREF
        1. 7.3.3.1 SYSREF Capture Detection
      4. 7.3.4 ADC Foreground Calibration
        1. 7.3.4.1 Calibration Control
        2. 7.3.4.2 ADC Switch
        3. 7.3.4.3 Calibration Configuration
      5. 7.3.5 Decimation Filter
        1. 7.3.5.1 Decimation Filter Response
        2. 7.3.5.2 Decimation Filter Configuration
        3. 7.3.5.3 20-bit Output Mode
        4. 7.3.5.4 Dynamic Switching
          1. 7.3.5.4.1 2 Lane Mode
          2. 7.3.5.4.2 1 Lane Mode
        5. 7.3.5.5 Numerically Controlled Oscillator (NCO)
        6. 7.3.5.6 NCO Frequency Programming
        7. 7.3.5.7 Fast Frequency Hopping
          1. 7.3.5.7.1 Fast frequency hopping Using the GPIO1/2 pins
          2. 7.3.5.7.2 Fast frequency hopping using GPIO1/2, SEN and SDIO pins
          3. 7.3.5.7.3 Fast Frequency Hopping Using the Fast SPI
      6. 7.3.6 JESD204B Interface
        1. 7.3.6.1 JESD204B Initial Lane Alignment (ILA)
          1. 7.3.6.1.1 SYNC Signal
        2. 7.3.6.2 JESD204B Frame Assembly
        3. 7.3.6.3 JESD204B Frame Assembly in Bypass Mode
        4. 7.3.6.4 JESD204B Frame Assembly with Complex Decimation - Single Band
        5. 7.3.6.5 JESD204B Frame Assembly with Real Decimation - Single Band
        6. 7.3.6.6 JESD204B Frame Assembly with Complex Decimation - Dual Band
        7. 7.3.6.7 JESD204B Frame Assembly with Complex Decimation - Quad Band
      7. 7.3.7 SERDES Output MUX
      8. 7.3.8 Test Pattern
        1. 7.3.8.1 Transport Layer
        2. 7.3.8.2 Link Layer
        3. 7.3.8.3 Internal Capture Memory Buffer
    4. 7.4 Device Functional Modes
      1. 7.4.1 Digital Averaging
    5. 7.5 Programming
      1. 7.5.1 GPIO Pin Control
      2. 7.5.2 Configuration Using the SPI Interface
        1. 7.5.2.1 Register Write
        2. 7.5.2.2 Register Read
    6. 7.6 Register Maps
      1. 7.6.1 Detailed Register Description
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Wideband RF Sampling Receiver
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Input Signal Path
          2. 8.2.1.1.2 Clocking
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Sampling Clock
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Set Up
      1. 8.3.1 Initial Device Configuration After Power-Up
        1. 8.3.1.1  STEP 1: RESET
        2. 8.3.1.2  STEP 2: Device Configuration
        3. 8.3.1.3  STEP 3: JESD Interface Configuration (1)
        4. 8.3.1.4  STEP 4: SYSREF Synchronization
        5. 8.3.1.5  STEP 5: JESD Interface Configuration (2)
        6. 8.3.1.6  STEP 6: Analog Trim Settings
        7. 8.3.1.7  STEP 7: Calibration Configuration
        8. 8.3.1.8  STEP 8: SYSREF Synchronization
        9. 8.3.1.9  STEP 9: Run Power up Calibration
        10. 8.3.1.10 STEP 10: JESD Interface Synchronization
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Analog out-of-band dither

The ADC32RF5x provides optional (enabled via SPI writes) analog out-of-band, large amplitude dither. It has a bandwidth of ~ 20 MHz located at DC and an adjustable amplitude with a maximum dither power of ~ -20 dBFS (PAR ~ 9 dB). The dither is completely rolled-off into the noise floor within ~ 100 MHz as illustrated in Figure 7-7. Since the dither is large amplitude, it is recommended for the signal input not to exceed -2.5 dBFS to avoid input saturation. The dither signal also couples to the input signal and, depending on input frequency, can degrade the close in phase noise.

GUID-20201008-CA0I-BH4C-DPVG-QWVFBV5LTXL9-low.gifFigure 7-7 Analog out-of-band dither

In the frequency domain the dither signal shows up like individual tones as shown in Figure 7-12. The dither update frequency can be adjusted with the dither divider setting. The dither update frequency is: FS / 4 / 2047 / 'Dither Divider'. In the frequency spectrum there will be 2 larger dither spurs at FIN +/- FS / 4 / 'Dither Divider'.

By default, the divider is set to 50, which translates to a dither spur spacing of ~ 7 kHz. A divider setting of 32 translates to a dither spacing of ~ 11 kHz as shown in Figure 7-9. The lower the divider setting, the higher the dither tone frequency. Figure 7-9 also shows that the dither energy reduces as the offset frequency increases - less dither energy reduces the higher harmonic spur improvement.

GUID-20221209-SS0I-D4SV-WGTQ-RF8SGJDHHVPW-low.svgFigure 7-8 Dither Close-Up
GUID-20221209-SS0I-XG55-CHRJ-3BD0QXPLZXQK-low.svgFigure 7-9 Dither vs Dither Divider Setting

The analog dither needs to be enabled in multiple locations. Different dither amplitudes should be used depending on internal averaging used as shown in Table 7-5.

Table 7-5 Recommended Dither Amplitude Settings
ModeAmplitudeDither Amp1Dither Amp2
1x AVG+/-1024 codes

0

0
1x AVG+/-768 codes0

-4

2x/4x AVG+/-1024 codes

3

0
2x/4x AVG+/-768 codes0

0

The internal analog dither can be enabled via the following register writes. The dither divider is set in register 0xB1 as actual -1 (e.g. a divider of 48 would be programmed as 47, default is 0x00 which is divider = 50). See Table 7-9.

Table 7-6 Register Write Example for Configuring the Internal Dither
ADDRDATADESCRIPTIONADDRDATADESCRIPTION
0x050x40Select ANALOG page0xB10x00

Sets dither divider. 0x00 = /50

0xA80x00DITHER AMP1: 3 = 0x80, 0 = 0x000xB20x00
0xCD0x00DITHER AMP2: -4 = 0x40, 0 = 0x000xAF0x18
0x040x010xAF0x100x10 = dither ENABLED, 0x90 = dither DISABLED
0x200x040x040x01
0x910x400x200x00
0xAF0x100x040x00