SBAS673A July   2014  – October 2015 ADC3421 , ADC3422 , ADC3423 , ADC3424

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: General
    6. 7.6  Electrical Characteristics: ADC3421, ADC3422
    7. 7.7  Electrical Characteristics: ADC3423, ADC3424
    8. 7.8  AC Performance: ADC3421
    9. 7.9  AC Performance: ADC3422
    10. 7.10 AC Performance: ADC3423
    11. 7.11 AC Performance: ADC3424
    12. 7.12 Digital Characteristics
    13. 7.13 Timing Requirements: General
    14. 7.14 Timing Requirements: LVDS Output
    15. 7.15 Typical Characteristics: ADC3421
    16. 7.16 Typical Characteristics: ADC3422
    17. 7.17 Typical Characteristics: ADC3423
    18. 7.18 Typical Characteristics: ADC3424
    19. 7.19 Typical Characteristics: Common
    20. 7.20 Typical Characteristics: Contour
  8. Parameter Measurement Information
    1. 8.1 Timing Diagrams
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Analog Inputs
      2. 9.3.2 Clock Input
        1. 9.3.2.1 SNR and Clock Jitter
      3. 9.3.3 Digital Output Interface
        1. 9.3.3.1 One-Wire Interface: 12x Serialization
        2. 9.3.3.2 Two-Wire Interface: 6x Serialization
    4. 9.4 Device Functional Modes
      1. 9.4.1 Input Clock Divider
      2. 9.4.2 Chopper Functionality
      3. 9.4.3 Power-Down Control
      4. 9.4.4 Internal Dither Algorithm
      5. 9.4.5 Summary of Performance Mode Registers
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
        1. 9.5.1.1 Register Initialization
          1. 9.5.1.1.1 Serial Register Write
          2. 9.5.1.1.2 Serial Register Readout
      2. 9.5.2 Register Initialization
    6. 9.6 Register Maps
      1. 9.6.1 Serial Register Description
        1. 9.6.1.1 Register 13h (address = 13h)
        2. 9.6.1.2 Register 11Dh (address = 11Dh)
        3. 9.6.1.3 Register 21Dh (address = 21Dh)
        4. 9.6.1.4 Register 308h (address = 308h)
        5. 9.6.1.5 Register 41Dh (address = 41Dh)
        6. 9.6.1.6 Register 51Dh (address = 51Dh)
        7. 9.6.1.7 Register 608h (address = 608h)
        8. 9.6.1.8 Register 70Ah (address = 70Ah)
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Driving Circuit Design: Low Input Frequencies
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
      3. 10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Links
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

12 Layout

12.1 Layout Guidelines

The ADC342x EVM layout can be used as a reference layout to obtain the best performance. A layout diagram of the EVM top layer is provided in Figure 189. Some important points to remember during laying out the board are:

  1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the package level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions, as shown in the reference layout of Figure 189 as much as possible.
  2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to minimize coupling between them. This configuration is also maintained on the reference layout of Figure 189 as much as possible.
  3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, the digital output traces must not be kept parallel to the analog input traces because this configuration can result in coupling from digital outputs to analog inputs and degrade performance. All digital output traces to the receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be matched in length to avoid skew among outputs.
  4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF capacitors can be kept close to the supply source.

12.2 Layout Example

ADC3421 ADC3422 ADC3423 ADC3424 Lyt_BAS670.gif Figure 189. Typical Layout of the ADC342x Board