SBASAV7 January   2024 ADS1014L , ADS1015L

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Timing Requirements
    7. 6.7 Timing Diagram
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Multiplexer
      2. 7.3.2 Analog Inputs
      3. 7.3.3 Full-Scale Range (FSR) and LSB Size
      4. 7.3.4 Voltage Reference
      5. 7.3.5 Oscillator
      6. 7.3.6 Output Data Rate and Conversion Time
      7. 7.3.7 Digital Comparator
      8. 7.3.8 Conversion-Ready Pin
      9. 7.3.9 SMBus Alert Response
    4. 7.4 Device Functional Modes
      1. 7.4.1 Reset and Power-Up
      2. 7.4.2 Operating Modes
        1. 7.4.2.1 Single-Shot Mode
        2. 7.4.2.2 Continuous-Conversion Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 I2C Address Selection
        2. 7.5.1.2 I2C Interface Speed
          1. 7.5.1.2.1 Serial Clock (SCL) and Serial Data (SDA)
        3. 7.5.1.3 I2C Data Transfer Protocol
        4. 7.5.1.4 Timeout
        5. 7.5.1.5 I2C General-Call (Software Reset)
      2. 7.5.2 Reading and Writing Register Data
        1. 7.5.2.1 Reading Conversion Data or the Configuration Register
        2. 7.5.2.2 Writing the Configuration Register
      3. 7.5.3 Data Format
  9. Register Map
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Basic Connections
      2. 9.1.2 Unused Inputs and Outputs
      3. 9.1.3 Single-Ended Inputs
      4. 9.1.4 Input Protection
      5. 9.1.5 Analog Input Filtering
      6. 9.1.6 Connecting Multiple Devices
      7. 9.1.7 Duty Cycling For Low Power
      8. 9.1.8 I2C Communication Sequence Example
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Power-Supply Sequencing
      2. 9.3.2 Power-Supply Decoupling
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Basic Connections

Figure 9-1 shows the principle I2C connections for the ADS1015L.

ADS1014L ADS1015L Typical
                    Connections of the ADS1015L Figure 9-1 Typical Connections of the ADS1015L

The fully differential voltage input of the ADS101xL is designed for connection to differential sources with moderately low source impedance, such as thermocouples and thermistors. Although the ADS101xL can read bipolar differential signals, these devices cannot accept negative voltages on either input.

The ADS101xL draws transient currents during conversion. A 0.1-μF power-supply bypass capacitor supplies the momentary bursts of extra current required from the supply.

The ADS101xL interfaces directly to standard mode and fast mode I2C controllers. Any microcontroller I2C peripheral, including controller-only and single-controller I2C peripherals, operates with the ADS101xL. The ADS101xL does not perform clock-stretching (that is, the device never pulls the clock line low), so this function does not need to be provided for unless other clock-stretching devices are on the same I2C bus.

Pullup resistors are required on both the SDA and SCL lines because I2C bus drivers are open drain. The size of these resistors depends on the bus operating speed and capacitance of the bus lines. Higher-value resistors consume less power, but increase the transition times on the bus, thus limiting the bus speed. Lower-value resistors allow higher speed, but at the expense of higher power consumption. Long bus lines have higher capacitance and require smaller pullup resistors to compensate. Do not use resistors that are too small to avoid bus drivers being unable to pull the bus lines low.