SBASAM0B March   2024  – November 2024 ADS127L18

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Timing Diagrams
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  Offset Error Measurement
    2. 6.2  Offset Drift Measurement
    3. 6.3  Gain Error Measurement
    4. 6.4  Gain Drift Measurement
    5. 6.5  NMRR Measurement
    6. 6.6  CMRR Measurement
    7. 6.7  PSRR Measurement
    8. 6.8  SNR Measurement
    9. 6.9  INL Error Measurement
    10. 6.10 THD Measurement
    11. 6.11 IMD Measurement
    12. 6.12 SFDR Measurement
    13. 6.13 Noise Performance
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Inputs (AINP, AINN)
        1. 7.3.1.1 Input Range
      2. 7.3.2 Reference Voltage (REFP, REFN)
        1. 7.3.2.1 Reference Voltage Range
      3. 7.3.3 Clock Operation
        1. 7.3.3.1 Clock Dividers
        2. 7.3.3.2 Internal Oscillator
        3. 7.3.3.3 External Clock
      4. 7.3.4 Power-On Reset (POR)
      5. 7.3.5 VCM Output Voltage
      6. 7.3.6 GPIO
      7. 7.3.7 Modulator
      8. 7.3.8 Digital Filter
        1. 7.3.8.1 Wideband Filter
        2. 7.3.8.2 Low-Latency Filter (Sinc)
          1. 7.3.8.2.1 Sinc4 Filter
          2. 7.3.8.2.2 Sinc4 + Sinc1 Cascade Filter
          3. 7.3.8.2.3 Sinc3 Filter
          4. 7.3.8.2.4 Sinc3 + Sinc1 Filter
    4. 7.4 Device Functional Modes
      1. 7.4.1  Reset
        1. 7.4.1.1 RESET Pin
        2. 7.4.1.2 Reset by SPI Register
        3. 7.4.1.3 Reset by SPI Input Pattern
      2. 7.4.2  Idle and Standby Modes
      3. 7.4.3  Power-Down
      4. 7.4.4  Speed Modes
      5. 7.4.5  Synchronization
        1. 7.4.5.1 Synchronized Control Mode
        2. 7.4.5.2 Start/Stop Control Mode
      6. 7.4.6  Conversion-Start Delay Time
      7. 7.4.7  Calibration
        1. 7.4.7.1 Offset Calibration Registers
        2. 7.4.7.2 Gain Calibration Registers
        3. 7.4.7.3 Calibration Procedure
      8. 7.4.8  Data Averaging
      9. 7.4.9  Diagnostics
        1. 7.4.9.1 ERROR Pin and ERR_FLAG Bit
        2. 7.4.9.2 SPI CRC
        3. 7.4.9.3 Register Map CRC
        4. 7.4.9.4 ADC Error
        5. 7.4.9.5 SPI Address Range
        6. 7.4.9.6 SCLK Counter
        7. 7.4.9.7 Clock Counter
        8. 7.4.9.8 Frame-Sync CRC
        9. 7.4.9.9 Self Test
      10. 7.4.10 Frame-Sync Data Port
        1. 7.4.10.1  Data Packet
        2. 7.4.10.2  Data Format
        3. 7.4.10.3  STATUS_DP Header Byte
        4. 7.4.10.4  FSYNC Pin
        5. 7.4.10.5  DCLK Pin
        6. 7.4.10.6  DOUTx Pins
        7. 7.4.10.7  DINx Pins
        8. 7.4.10.8  Time Division Multiplexing
        9. 7.4.10.9  Daisy Chain
        10. 7.4.10.10 DOUTx Timing
    5. 7.5 Programming
      1. 7.5.1 Hardware Programming
      2. 7.5.2 SPI Programming
        1. 7.5.2.1 Chip Select (CS)
        2. 7.5.2.2 Serial Clock (SCLK)
        3. 7.5.2.3 Serial Data Input (SDI)
        4. 7.5.2.4 Serial Data Output (SDO)
      3. 7.5.3 SPI Frame
      4. 7.5.4 Commands
        1. 7.5.4.1 Write Register Command
        2. 7.5.4.2 Read Register Command
      5. 7.5.5 SPI Daisy-Chain
  9. Register Map
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Driver
      2. 9.1.2 Antialias Filter
      3. 9.1.3 Reference Voltage
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 AVDD1 and AVSS
      2. 9.3.2 AVDD2
      3. 9.3.3 IOVDD
      4. 9.3.4 CAPA and CAPD
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The ADS127L14 and ADS127L18 are quad and octal, 24-bit, high-resolution, simultaneous-sampling, delta-sigma (ΔΣ) analog-to-digital converters (ADCs). The devices offer an excellent combination of dc accuracy, ac resolution, and wide signal bandwidth for synchronized, multichannel data acquisition systems. The ADCs are optimized for high resolution and wide signal bandwidths with low power consumption.

The Functional Block Diagram shows the device features. The devices consist of four or eight independent delta-sigma ADCs from which data is read through a frame-sync data port. Each ADC has programmable digital filters that provide sample rates up to 512kSPS in wideband filter mode and 1365.3kSPS in low-latency filter mode. Four selectable power-scalable speed modes allow optimization of signal bandwidth, resolution, and power consumption.

Signal and reference voltage input precharge buffers of each ADC channel reduce analog input current and sampling noise to allow the use of low bandwidth signal drivers. The VCM output is a buffered mid-supply voltage used to drive the common-mode voltage of external buffers and gain stages.

The multibit ΔΣ modulator measures the differential input signal, VIN = (VAINP – VAINN), against the differential reference, VREF = (VREFP – VREFN). The modulator produces low-resolution, high-frequency data. Noise shaping of the modulator shifts the quantization noise of the low-resolution data to an out-of-band frequency range where the digital filter removes this noise. The noise remaining within the pass band is low-level thermal noise. The digital filter decimates and filters the modulator data to provide high-resolution output data.

The digital filter has two filter modes: low-latency filter (typically used for dc signal measurement) and wideband filter (typically used for ac signal measurement). The low-latency filter is a variable-order sinc filter with filter options for sinc4, sinc4 + sinc1, sinc3, and sinc3 + sinc1. This filter allows optimization between noise performance, conversion latency, and signal bandwidth. The wideband filter is a multi-stage, linear phase finite impulse response (FIR) filter. This filter provides outstanding frequency response characteristics with low pass-band ripple, narrow transition-band, and high stop-band attenuation. The devices allow power-of-2 related data rates between channels.

The MODE pin selects the method of device configuration: by hardware pin settings or by the SPI serial interface.

The frame-sync data port provides the conversion data using four or eight data lanes or time division multiplex (TDM) format to reduce the number of data lanes. Daisy-chain multiple devices by routing the DOUTx pins to the DINx pins of the chained devices.

The device supports external clock operation for ac or dc signal applications and internal oscillator operation for dc signal applications. The START pin simultaneously synchronizes the ADC channels. The RESET pin resets the ADC.

Cyclic redundancy check (CRC) error detection is available for the frame-sync port and the SPI configuration port. The register map CRC operates in the background to detect unintended changes to the register values after the initial values are uploaded to the device. The open-drain ERROR output pin asserts low when an ADC error is detected.

Eight general-purpose input/output (GPIO) pins are available. Two GPIOs are standalone pins and the remaining six GPIO pins are multiplexed with the frame-sync DINx and DOUTx pins.

The AVDD1 supply voltage powers the precharge buffers and the input sampling switches. AVDD2 powers the modulators through an internal voltage regulator. The IOVDD supply voltage is the digital I/O voltage and also powers the digital cores through a second voltage regulator. The internal regulators reduce overall power consumption and maintain consistent levels of device performance under varying power supply conditions.