SBASB74 October   2024 ADS127L21B

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements (1.65V ≤ IOVDD ≤ 2V)
    7. 5.7  Switching Characteristics (1.65V ≤ IOVDD ≤ 2V)
    8. 5.8  Timing Requirements (2V < IOVDD ≤ 5.5V)
    9. 5.9  Switching Characteristics (2V < IOVDD ≤ 5.5V)
    10. 5.10 Timing Diagrams
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  Offset Error Measurement
    2. 6.2  Offset Drift Measurement
    3. 6.3  Gain Error Measurement
    4. 6.4  Gain Drift Measurement
    5. 6.5  NMRR Measurement
    6. 6.6  CMRR Measurement
    7. 6.7  PSRR Measurement
    8. 6.8  SNR Measurement
    9. 6.9  INL Error Measurement
    10. 6.10 THD Measurement
    11. 6.11 IMD Measurement
    12. 6.12 SFDR Measurement
    13. 6.13 Noise Performance
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input (AINP, AINN)
        1. 7.3.1.1 Input Range
      2. 7.3.2 Reference Voltage (REFP, REFN)
        1. 7.3.2.1 Reference Voltage Range
      3. 7.3.3 Clock Operation
        1. 7.3.3.1 Internal Oscillator
        2. 7.3.3.2 External Clock
      4. 7.3.4 Modulator
      5. 7.3.5 Digital Filter
        1. 7.3.5.1 Wideband Filter
          1. 7.3.5.1.1 Wideband Filter Options
          2. 7.3.5.1.2 Sinc5 Filter Stage
          3. 7.3.5.1.3 FIR1 Filter Stage
          4. 7.3.5.1.4 FIR2 Filter Stage
          5. 7.3.5.1.5 FIR3 Filter Stage
          6. 7.3.5.1.6 FIR3 Default Coefficients
          7. 7.3.5.1.7 IIR Filter Stage
            1. 7.3.5.1.7.1 IIR Filter Stability
        2. 7.3.5.2 Low-Latency Filter (Sinc)
          1. 7.3.5.2.1 Sinc3 and Sinc4 Filters
          2. 7.3.5.2.2 Sinc3 + Sinc1 and Sinc4 + Sinc1 Cascade Filter
      6. 7.3.6 Power Supplies
        1. 7.3.6.1 AVDD1 and AVSS
        2. 7.3.6.2 AVDD2
        3. 7.3.6.3 IOVDD
        4. 7.3.6.4 Power-On Reset (POR)
        5. 7.3.6.5 CAPA and CAPD
      7. 7.3.7 VCM Output Voltage
    4. 7.4 Device Functional Modes
      1. 7.4.1 Speed Modes
      2. 7.4.2 Idle Mode
      3. 7.4.3 Standby Mode
      4. 7.4.4 Power-Down Mode
      5. 7.4.5 Reset
        1. 7.4.5.1 RESET Pin
        2. 7.4.5.2 Reset by SPI Register Write
        3. 7.4.5.3 Reset by SPI Input Pattern
      6. 7.4.6 Synchronization
        1. 7.4.6.1 Synchronized Control Mode
        2. 7.4.6.2 Start/Stop Control Mode
        3. 7.4.6.3 One-Shot Control Mode
      7. 7.4.7 Conversion-Start Delay Time
      8. 7.4.8 Calibration
        1. 7.4.8.1 OFFSET2, OFFSET1, OFFSET0 Calibration Registers (Addresses 0Ch, 0Dh, 0Eh)
        2. 7.4.8.2 GAIN2, GAIN1, GAIN0 Calibration Registers (Addresses 0Fh, 10h, 11h)
        3. 7.4.8.3 Calibration Procedure
    5. 7.5 Programming
      1. 7.5.1 Serial Interface (SPI)
        1. 7.5.1.1  Chip Select (CS)
        2. 7.5.1.2  Serial Clock (SCLK)
        3. 7.5.1.3  Serial Data Input (SDI)
        4. 7.5.1.4  Serial Data Output/Data Ready (SDO/DRDY)
        5. 7.5.1.5  SPI Frame
        6. 7.5.1.6  Full-Duplex Operation
        7. 7.5.1.7  Device Commands
          1. 7.5.1.7.1 No-Operation
          2. 7.5.1.7.2 Read Register Command
          3. 7.5.1.7.3 Write Register Command
        8. 7.5.1.8  Read Conversion Data
          1. 7.5.1.8.1 Conversion Data
          2. 7.5.1.8.2 Data Ready
            1. 7.5.1.8.2.1 DRDY
            2. 7.5.1.8.2.2 SDO/DRDY
            3. 7.5.1.8.2.3 DRDY Bit
            4. 7.5.1.8.2.4 Clock Counting
          3. 7.5.1.8.3 STATUS Byte
        9. 7.5.1.9  Daisy-Chain Operation
        10. 7.5.1.10 3-Wire SPI Mode
          1. 7.5.1.10.1 3-Wire SPI Mode Frame Reset
        11. 7.5.1.11 SPI CRC
      2. 7.5.2 Register Memory CRC
        1. 7.5.2.1 Main Program Memory CRC
        2. 7.5.2.2 FIR Filter Coefficient CRC
        3. 7.5.2.3 IIR Filter Coefficient CRC
  9. Register Map
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 SPI Operation
      2. 9.1.2 Input Driver
      3. 9.1.3 Antialias Filter
      4. 9.1.4 Reference Voltage
      5. 9.1.5 Simultaneous-Sampling Systems
    2. 9.2 Typical Applications
      1. 9.2.1 A-Weighting Filter Design
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 PGA855 Programmable Gain Amplifier
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 THS4551 Antialias Filter Design
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Daisy-Chain Operation

In simultaneous-sampling systems with multiple ADCs, a daisy-chain string connection reduces the number of SPI I/Os to the host controller. A daisy-chain connection links the SPI output of one device to the SPI input of the next device. This connection results in the chained devices appearing as a single logical device to the host controller. There is no special programming required for daisy-chain operation, simply apply additional shift clocks to access all devices in the chain. For simplified operation, program the same SPI frame size for each device. For example, when enabling the CRC option of all devices, thus producing a 32-bit frame size.

Figure 7-42 illustrates four devices connected in a daisy-chain configuration. The SDI of ADS127L21B (1) connects to the host SPI data out, and SDO/DRDY of ADS127L21B (4) connects to the host SPI data input. The shift operation is simultaneous for all devices in the chain. After each ADC completes the conversion data shifting, the shifted-in data of SDI appears on SDO/DRDY. This pin then drives the SDI of the next device in the chain. The shift operation continues until the last device in the chain is reached. The SPI frame ends when CS is taken high, at which time the data shifted into each device is interpreted. Program the SDO/DRDY pin to data-output-only mode.

ADS127L21B Daisy-Chain Connection Figure 7-42 Daisy-Chain Connection

Figure 7-43 shows the 24-bit frame size of each device used at initial communication after device power up.

ADS127L21B 24-Bit Data
                                        Input SequenceFigure 7-43 24-Bit Data Input Sequence

To input data, the host first shifts in the data intended for the last device in the chain. The number of input bytes for each ADC is sized to match the output frame size. The default frame size is 24 bits, so initially each ADC requires three bytes by prefixing a pad byte before the two command bytes. The input data of ADC (4) is first, followed by the input data of ADC (3), and so forth.

Figure 7-44 illustrates the detailed input data sequence for the daisy-chain write register operation of Figure 7-42. 40-bit frames for each ADC are shown (24-bits of data, with the STATUS and CRC bytes enabled). Command operations are potentially different for each ADC. The read register operation requires a second frame operation to read out register data.

ADS127L21B Write Register Data in Daisy-Chain
                                        Connection
Optional CRC byte. If CRC is disabled, the individual frames shorten by one byte.
Previous state of SDO/DRDY before SCLK is applied.
Optional STATUS byte. If STATUS is disabled, the individual frames shorten by one byte.
Figure 7-44 Write Register Data in Daisy-Chain Connection

Figure 7-45 shows the clock sequence to read conversion data from the device connection provided in Figure 7-42. This example illustrates a 32-bit output frame (24-bits of data, with the CRC byte enabled). The output data of ADC (4) is first in the sequence, followed by the data of ADC (3), and so on. The number of bits per frame multiplied by the number of devices in the chain is the number of clocks required to shift out data. In this example, 32-bit output frames × four devices result in 128 total clocks.

ADS127L21B Read Conversion Data in Daisy-Chain
                                        Connection
Optional CRC byte. If CRC is disabled, the individual frames shorten by one byte.
Previous state of SDO/DRDY before SCLK is applied.
Figure 7-45 Read Conversion Data in Daisy-Chain Connection

The maximum number of devices connected in daisy-chain configuration is limited by the SCLK signal frequency, data rate, and number of bits per frame. Equation 22 calculates the maximum number of devices allowed in a chain. The same limitation applies to parallel-connected SPI because the data from each ADC is also read in series.

Equation 22. Maximum devices in a chain = ⌊fSCLK / (fDATA · bits per frame)⌋

For example, the maximum number of daisy-chain connected devices is the floor of: ⌊20 MHz / (100 kHz · 32)⌋ = 6. Assuming fSCLK = 20 MHz, fDATA = 100 kSPS, and 32-bit frames are used.