SLAS946B April   2013  – January 2016 ADS5401

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics - Supply, Power Supply
    6. 7.6  Electrical Characteristics - Analog Inputs, Dynamic Accuracy, Clock Input
    7. 7.7  Electrical Characteristics - Dynamic AC, Enabled
    8. 7.8  Electrical Characteristics- Dynamic AC, Disabled
    9. 7.9  Electrical Characteristics - Over-Drive Recovery Error, Sample Timing
    10. 7.10 Electrical Characteristics - Digital Inputs, Digital Outputs
    11. 7.11 Serial Register Write Timing Requirements
    12. 7.12 Reset Timing Requirements
    13. 7.13 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Test Pattern Output
      2. 8.3.2 Clock Input
      3. 8.3.3 Analog Inputs
      4. 8.3.4 Overrange Indication
      5. 8.3.5 Interleaving Correction
      6. 8.3.6 Decimation Filter
      7. 8.3.7 Multi Device Synchronization
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down Modes
    5. 8.5 Programming
      1. 8.5.1 Device Initialization
      2. 8.5.2 Serial Register Write
      3. 8.5.3 Serial Register Readout
    6. 8.6 Register Maps
      1. 8.6.1  Register Name: Config0 - Address: 0×00, Default = 0×00
      2. 8.6.2  Register Name: Config1 - Address: 0×01, Default = 0×00
      3. 8.6.3  Register Name: Config2 - Address: 0×02, Default = 0×780
      4. 8.6.4  Register Name: 3 - Address: 0x03
      5. 8.6.5  Register Name: E - Address: 0x0E
      6. 8.6.6  Register Name: F - Address: 0x0F
      7. 8.6.7  Register Name: 2B - Address: 0x2B
      8. 8.6.8  Register Name: 2C - Address: 0x2C
      9. 8.6.9  Register Name: 37 - Address: 0x37
      10. 8.6.10 Register Name: 38 - Address: 0x38
      11. 8.6.11 Register Name: 3A - Address: 0x3A
      12. 8.6.12 Register Name: 66 - Address: 0x66
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Clocking Source for ADC5401
        2. 9.2.2.2 Amplifier Selection
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage AVDD33 –0.5 4 V
AVDDC –0.5 2.3
AVDD18 –0.5 2.3
DVDD –0.5 2.3
DVDDLVDS –0.5 2.3
IOVDD –0.5 4
Voltage applied to input pins INA_P, INA_N –0.5 AVDD33 + 0.5 V
CLKINP, CLKINN –0.5 AVDDC + 0.5 V
SYNCP, SYNCN –0.5 AVDD33 + 0.5 V
SRESET, SDENB, SCLK, SDIO, SDO, ENABLE –0.5 IOVDD + 0.5 V
Operating free-air temperature, TA –40 85 °C
Operating junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) 2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) 750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
SUPPLY
Supply voltage AVDD33 3.15 3.3 3.45 V
AVDDC, AVDD18, DVDD, DVDDLVDS 1.7 1.8 1.9
IOVDD 1.7 1.8 3.45
GENERAL PARAMETERS
ADC Clock Frequency 40 800 MSPS
Resolution 12 Bits
TJ Recommended operating junction temperature 105 °C
Maximum rated operating junction temperature(1) 125
TA Recommended free-air temperature –40 25 85 °C
(1) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

7.4 Thermal Information

THERMAL METRIC(1) ADS5401 UNIT
ZAY (NFBGA)
196 PINS
RθJA Junction-to-ambient thermal resistance(2) 37.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(3) 6.8 °C/W
RθJB Junction-to-board thermal resistance(4) 16.8 °C/W
ψJT Junction-to-top characterization parameter(5) 0.2 °C/W
ψJB Junction-to-board characterization parameter(6) 16.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance(7) N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
Spacer

7.5 Electrical Characteristics - Supply, Power Supply

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85 °C, ADC sampling rate = 800 Msps, 50% clock duty cycle, AVDD33 = 3.3V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8 V, –1 dBFS differential input (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLY
IAVDD33 3.3-V analog supply current 161 181 mA
IAVDD18 1.8-V analog supply current 73 85 mA
IAVDDC 1.8-V clock supply current 52 70 mA
IDVDD 1.8-V digital supply current Auto correction enabled 238 280 mA
IDVDD 1.8-V digital supply current Auto correction disabled 175 mA
IDVDD 1.8-V digital supply current Auto correction disabled, decimation filter enabled 190 mA
IDVDDLVDS 1.8-V LVDS supply current 80 100 mA
IIOVDD 1.8-V I/O Voltage supply current 1 2 mA
Pdis Total power dissipation Auto correction enabled, decimation filter disabled 1.33 1.6 W
Pdis Total power dissipation Auto correction disabled, decimation filter disabled 1.22 W
PSRR 250kHz to 500MHz 40 dB
Shut-down power dissipation 7 mW
Shut-down wake-up time 2.5 ms
Standby power dissipation 7 mW
Standby wake-up time 100 µs
Deep-sleep mode power dissipation Auto correction disabled 295 mW
Auto correction enabled 360 mW
Deep-sleep mode wake-up time 20 µs
Light-sleep mode power dissipation Auto correction disabled 465 mW
Auto correction enabled 530 mW
Light-sleep mode wake-up time 2 µs

7.6 Electrical Characteristics - Analog Inputs, Dynamic Accuracy, Clock Input

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 800 Msps, 50% clock duty cycle, AVDD3V = 3.3V, AVDD/DRVDD/IOVDD = 1.8 V, –1 dBFS differential input (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Differential input full-scale 1.0 Vpp
Input common-mode voltage 1.9 ±0.1 V
Input resistance Differential at DC 1
Input capacitance Each input to GND 2 pF
VCM common-mode voltage output 1.9 V
Analog input bandwidth (3dB) 1200 MHz
DYNAMIC ACCURACY
Offset Error Auto correction disabled –20 ±6 20 mV
Auto correction enabled –1 0 1 mV
Offset temperature coefficient –10 µV/°C
Gain error –5 ±0.6 5 %FS
Gain temperature coefficient 0.003 %FS/°C
Differential nonlinearity fIN = 230 MHz –1 ±0.8 2 LSB
Integral nonlinearity fIN = 230 MHz -5 ±2 5 LSB
CLOCK INPUT
Input clock frequency 40 800 MHz
Input clock amplitude 2 Vpp
Input clock duty cycle 40% 50% 60%
Internal clock biasing 0.9 V

7.7 Electrical Characteristics - Dynamic AC, Enabled

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 800 Msps, 50% clock duty cycle, AVDD33 = 3.3V, AVDDC / AVDD18 / DVDD / DVDDLVDS / IOVDD = 1.8 V, –1 dBFS differential input (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Auto Correction Enabled Vpp
DYNAMIC AC CHARACTERISTICS(1)
SNR Signal-to-Noise Ratio fIN = 10 MHz 61.7 dBFS
fIN = 100 MHz 61.7
fIN = 230 MHz 58 61.3
fIN = 450 MHz 60.7
fIN = 700 MHz 59.8
HD2,3 Second and third harmonic distortion fIN = 10 MHz 78 dBc
fIN = 100 MHz 77
fIN = 230 MHz 67 77
fIN = 450 MHz 76
fIN = 700 MHz 74
Non HD2,3 Spur free dynamic range (excluding second and third harmonic distortion
Fs/2 – FIN spur)
fIN = 10 MHz 81 dBc
fIN = 100 MHz 79
fIN = 230 MHz 67 78
fIN = 450 MHz 78
fIN = 700 MHz 76
IL Fs/2-Fin interleaving spur fIN = 10 MHz 91 dBc
fIN = 100 MHz 81
fIN = 230 MHz 63 74
fIN = 450 MHz 72
fIN = 700 MHz 69
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 61.6 dBFS
fIN = 100 MHz 61.4
fIN = 230 MHz 57.7 61
fIN = 450 MHz 60.5
fIN = 700 MHz 59.5
THD Total Harmonic Distortion fIN = 10 MHz 75 dBc
fIN = 100 MHz 73
fIN = 230 MHz 66 73
fIN = 450 MHz 74
fIN = 700 MHz 72
IMD3 Inter modulation distortion Fin = 169.5 and 170.5 MHz,
-7dBFS
76 dBFS
Fin = 649.5 and 650.5 MHz,
-7dBFS
70
Crosstalk 90 dB
ENOB Effective number of bits fIN = 230 MHz 9.8 LSB
(1) SFDR and SNR calculations do not include the DC or Fs/2 bins when Auto Correction is disabled.

7.8 Electrical Characteristics- Dynamic AC, Disabled

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Auto correction Disabled Vpp
DYNAMIC AC CHARACTERISTICS (1)
SNR Signal to Noise Ratio fIN = 10 MHz 61.8 dBFS
fIN = 100 MHz 61.8
fIN = 230 MHz 61.5
fIN = 450 MHz 61.1
fIN = 700 MHz 60.6
HD2,3 Second and third harmonic distortion fIN = 10 MHz 80 dBc
fIN = 100 MHz 77
fIN = 230 MHz 79
fIN = 450 MHz 77
fIN = 700 MHz 75
Non HD2,3 Spur Free Dynamic Range (excluding second and third harmonic distortion
Fs/2 – FIN spur)
fIN = 10 MHz 83 dBc
fIN = 100 MHz 81
fIN = 230 MHz 79
fIN = 450 MHz 79
fIN = 700 MHz 77
IL Fs/2-Fin interleaving spur fIN = 10 MHz 84 dBc
fIN = 100 MHz 80
fIN = 230 MHz 75
fIN = 450 MHz 71
fIN = 700 MHz 69
SINAD Signal to noise and distortion ratio fIN = 10 MHz 61.7 dBFS
fIN = 100 MHz 61.6
fIN = 230 MHz 61.3
fIN = 450 MHz 61
fIN = 700 MHz 60.3
THD Total Harmonic Distortion fIN = 10 MHz 77 dBc
fIN = 100 MHz 75
fIN = 230 MHz 74
fIN = 450 MHz 75
fIN = 700 MHz 72
IMD3 Inter modulation distortion Fin = 169.5 and 170.5 MHz,
-7dBFS
76 dBFS
Fin = 649.5 and 650.5 MHz,
-7dBFS
72
Crosstalk 90 dB
ENOB Effective number of bits fIN = 230 MHz 9.8 LSB

7.9 Electrical Characteristics - Over-Drive Recovery Error, Sample Timing

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 800Msps, 50% clock duty cycle, AVDD33 = 3.3 V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8 V, –1 dBFS differential input (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OVER-DRIVE RECOVERY ERROR
Input overload recovery Recovery to within 1% (of final value) for 6dB overload with sine wave input 2 Output Clock
SAMPLE TIMING CHARACTERISTICS
Aperture Jitter Sample uncertainty 100 fs rms
Data Latency ADC sample to digital output, auto correction disabled 38 Clock Cycles
ADC sample to digital output, auto correction enabled 50
ADC sample to digital output, Decimation filter enabled, Auto correction disabled 74 Sampling Clock Cycles
Over-range Latency ADC sample to over-range output 12 Clock Cycles

7.10 Electrical Characteristics - Digital Inputs, Digital Outputs

The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD33 = 3.3 V, AVDDC/AVDD18/DVDD/DVDDLVDS/IOVDD = 1.8 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUTS – SRESET, SCLK, SDENB, SDIO, ENABLE
High-level input voltage All digital inputs support 1.8-V and 3.3-V logic levels. 0.7 x IOVDD V
Low-level input voltage 0.3 x IOVDD V
High-level input current –50 200 µA
Low-level input current –50 50 µA
Input capacitance 5 pF
DIGITAL OUTPUTS – SDO
High-level output voltage Iload = -100 µA IOVDD – 0.2 V
Iload = -2 mA 0.8 x IOVDD
Low-level output voltage Iload = 100 µA 0.2 V
Iload = 2 mA 0.22 x IOVDD
DIGITAL INPUTS – SYNCP/N
VID Differential input voltage 250 350 450 mV
VCM Input common-mode voltage 1.125 1.2 1.375 V
tSU 500 ps
DIGITAL OUTPUTS – DA[11:0]P/N, DACLKP/N, OVRAP/N, SYNCOUTP/N
VOD Output differential voltage IOUT = 3.5 mA 250 350 450 mV
VOCM Output common-mode voltage IOUT = 3.5 mA 1.125 1.25 1.375 V
tsu Fs = 800 Msps, Data valid to zero-crossing of DACLK 230 450 ps
th Fs = 800 Msps, Zero-crossing of DACLK to data becoming invalid 230 410 ps
tPD Fs = 800 Msps, CLKIN falling edge to DACLK, DBCLK rising edge 3.36 3.69 3.92 ns
tRISE 10% - 90% 100 150 200 ps
tFALL 90% - 10% 100 150 200 ps

7.11 Serial Register Write Timing Requirements

MIN MAX UNIT
fSCLK SCLK frequency (equal to 1/tSCLK) > DC 20 MHz
tSLOADS SDENB to SCLK setup time 25 ns
tSLOADH SCLK to SDENB hold time 25 ns
tDSU SDIO setup time 25 ns
tDH SDIO hold time 25 ns

7.12 Reset Timing Requirements

MIN NOM MAX UNIT
t1 Power-on delay Delay from power up to active low RESET pulse 3 ms
t2 Reset pulse width Active low RESET pulse width 20 ns
t3 Register write delay Delay from RESET disable to SDENb active 100 ns
ADS5401 timing_las946.gif Figure 1. Timing Diagram for 12-Bit DDR Output
ADS5401 dev_init_las933.gif Figure 2. Device Initialization Timing Diagram

7.13 Typical Characteristics

Typical values at TA = +25°C, full temperature range is TMIN = -40°C to TMAX = +85°C, ADC sampling rate = 800 Msps, 50% clock duty cycle, AVDD33 = 3.3 V, AVDDC /AVDD18 / DVDD / DVDDLVDS / IOVDD = 1.8 V, -1dBFS differential input, unless otherwise noted.
ADS5401 Fig4 FFT10MHzon.png Figure 3. FFT for 10-MHz Input Signal (Auto On)
ADS5401 Fig6 FFT 230MHz on.png Figure 5. FFT for 230-MHz Input Signal (Auto On)
ADS5401 Fig8 FFT 450MHz on.png Figure 7. FFT for 450-MHz Input Signal (Auto On)
ADS5401 Fig10 FFT 700MHz on.png Figure 9. FFT for 700-MHz Input Signal (Auto On)
ADS5401 Fig11_1 FFT IMD on.png Figure 11. FFT for Two Tone Input Signal (Auto On)
ADS5401 Fig12 SFDR vs fin.png Figure 13. SFDR vs Input Frequency
ADS5401 Fig14 SFDR vs Ain.png Figure 15. SFDR vs Amplitude (fin = 230 MHz)
ADS5401 Fig16 IMD3 vs Ain.png Figure 17. Tow Tone Performance Across Input Amplitude
(fin = 170 MHz)
ADS5401 Fig18 SFDRvsVref off.png Figure 19. SFDR vs Vref (Auto Off)
ADS5401 Fig20 SNRvsVref off.png Figure 21. SNR vs Vref (Auto Off)
ADS5401 Fig22 SFDRSNR vsTemp.png Figure 23. Performance Across Temperature (fin = 230 MHz)
ADS5401 Fig24 SFDRSNR vs AVDD18.png Figure 25. Performance Across AVDD18 (fin = 230MHz)
ADS5401 Fig26 INL.png Figure 27. INL
ADS5401 Fig28 CMRR.png Figure 29. CMRR Across Frequency
ADS5401 PowervsFs.png Figure 31. Power Across Sampling Frequency
ADS5401 Fig5 FFT10MHz off.png Figure 4. FFT for 10-MHz Input Signal (Auto Off)
ADS5401 Fig7 FFT 230MHz off.png Figure 6. FFT for 230-MHz Input Signal (Auto Off)
ADS5401 Fig9 FFT 450MHz off.png Figure 8. FFT for 450-MHz Input Signal (Auto Off)
ADS5401 Fig11 FFT 700MHz off.png Figure 10. FFT for 700-MHz Input Signal (Auto Off)
ADS5401 Fig11_2 FFT IMD of.png Figure 12. FFT for Two Tone Input Signal (Auto Off)
ADS5401 Fig13 SNR vs fin.png Figure 14. SNR vs Input Frequency
ADS5401 Fig15 SNR vs Ain.png Figure 16. SNR vs Amplitude (fin = 230 MHz)
ADS5401 Fig17 SFDR vs VREF on.png Figure 18. SFDR vs Vref (Auto On)
ADS5401 Fig19 SNRvsVref on.png Figure 20. SNR vs Vref (Auto On)
ADS5401 Fig21 SFDRSNR vs VCM.png Figure 22. Performance Across Input
Common-Mode Voltage (fin = 230 MHz)
ADS5401 Fig23 SFDRSNR vs AVDD33.png Figure 24. Performance Across AVDD33 (fin = 230 MHz)
ADS5401 Fig25 SFDRSNR vs CLKin.png Figure 26. Performance Across Clock Amplitude
ADS5401 Fig27 DNL.png Figure 28. DNL
ADS5401 Fig29 PSRR.png Figure 30. PSRR Across Frequency
ADS5401 Fig31 SFDR contour plot (on).png Figure 32. SFDR Across Input and Sampling Frequencies (Auto On)
ADS5401 Fig33 SNR contour plot (on).png Figure 34. SNR Across Input and Sampling Frequencies (Auto On)
ADS5401 Fig32 SFDR contour plot (off).png Figure 33. SFDR Across Input and Sampling Frequencies (Auto Off)
ADS5401 Fig34 SNR contour plot (off).png Figure 35. SNR Across Input and Sampling Frequencies (Auto On)