SBAS482C January   2010  – September 2017 ADS7924

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Multiplexer
      2. 7.3.2 ADC Input
      3. 7.3.3 Reference
      4. 7.3.4 Clock
      5. 7.3.5 Data Format
      6. 7.3.6 ADC Conversion Timing
        1. 7.3.6.1 Power-Up Time
        2. 7.3.6.2 Acquisition Time
        3. 7.3.6.3 Conversion Time
        4. 7.3.6.4 Sleep Time
      7. 7.3.7 Interrupt Output (INT)
      8. 7.3.8 PWRCON
      9. 7.3.9 Alarm
    4. 7.4 Device Functional Modes
      1. 7.4.1 ADC Operating Modes
        1. 7.4.1.1 Idle Mode
        2. 7.4.1.2 Awake Mode
        3. 7.4.1.3 Manual-Single Mode
        4. 7.4.1.4 Manual-Scan Mode
        5. 7.4.1.5 Auto-Single Mode
        6. 7.4.1.6 Auto-Scan Mode
        7. 7.4.1.7 Auto-Single With Sleep Mode
        8. 7.4.1.8 Auto-Scan With Sleep Mode
        9. 7.4.1.9 Auto-Burst Scan With Sleep Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
      2. 7.5.2 I2C Address Selection
      3. 7.5.3 I2C Speed Modes
      4. 7.5.4 Slave Mode Operations
        1. 7.5.4.1 Receive Mode
        2. 7.5.4.2 Transmit Mode:
      5. 7.5.5 Writing the Registers
      6. 7.5.6 Reading the Registers
    6. 7.6 Register Map
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Using an Operational Amplifier Between Multiplexer Output and ADC Input
      2. 8.1.2 Using an Operational Amplifier and RC Filter Between Multiplexer Output and ADC Input
      3. 8.1.3 Using an RC Filter Between Multiplexer Output and ADC Input
      4. 8.1.4 Operational Amplifier With Filter and Gain Option Between Multiplexer Output and ADC Input
      5. 8.1.5 Driving an RC Filter With an Operational Amplifier Between Multiplexer Output and ADC Input
      6. 8.1.6 Average Power Consumption
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Setting the Throughput
        2. 8.2.2.2 Selecting the Operational Amplifier
        3. 8.2.2.3 Selecting the RC Filter
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

Over operating free-air temperature range, unless otherwise noted.(1)
MIN MAX UNIT
Supply voltage, AVDD to AGND –0.3 6 V
Supply voltage, DVDD to DGND –0.3 6 V
Supply voltage, DVDD to AVDD AVDD ≥ DVDD V
AGND to DGND –0.3 0.3 V
Analog input voltage AGND – 0.3 0.3 V
Digital input voltage with respect to DGND (SCL and SDA) DGND – 0.3 6 V
Digital input voltage with respect to DGND (A0, RESET) DGND – 0.3 DVDD + 0.3 V
Input current to all pins except supply pins –10 10 mA
Maximum operating temperature –40 85 °C
Storage temperature –60 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
AVDD Analog Supply Voltage 2.2 5.5 V
DVDD Digital Supply Voltage 1.65 AVDD V

Thermal Information

THERMAL METRIC(1) ADS7924 UNIT
RTE (WQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 48.1 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 47.3 °C/W
RθJB Junction-to-board thermal resistance 60.8 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 14.1 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance 0.4 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

Minimum and maximum specifications are at TA = –40°C to 85°C, 1.65 V < DVDD < 5.5 V, and 2.2 V < AVDD < 5.5 V. Typical specifications are at TA = 25°C, AVDD = 5 V, and DVDD = 5 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
Full-scale input span (CHX – AGND) 0 AVDD V
Input capacitance(1) 4 10 pF
ADC sampling capacitance 15 pF
MUX resistance 60 Ω
Input channel crosstalk 85 dB
SYSTEM PERFORMANCE
Resolution 12 Bits
No missing codes 12 Bits
Integral linearity –1.5 ±0.5 1.5 LSBs
Differential linearity –1 ±0.6 1.5 LSBs
Offset error –5 5 LSBs
Offset error drift 0.01 LSB/°C
Gain error –0.2% –0.01% 0.2%
Gain error drift 0.6 ppm/°C
Noise (rms) 0.125 LSB
SAMPLING DYNAMICS
Monitoring time/channel(3) 10 µs
CLOCK
Internal clock frequency variation ±20%
DIGITAL INPUT/OUTPUT
Logic family CMOS
Logic level:
VIH (SDA, SCL, A0, RESET) 0.8 DVDD DVDD + 0.3 V
VIL (SDA, SCL, A0, RESET) DGND – 0.3 0.4 V
Input current II VI = DVDD or DGND –10 10 μA
VOH (PWRCON, INT) IOH = 100 μA, INT pin 0.8 DVDD DVDD V
IOH = 100 µA, PWRCON pin 0.8 AVDD AVDD V
VOL (PWRCON, INT, SDA) IOL = 100 μA DGND 0.4 V
Low-level output current IOL SDA pin, VOL = 0.6 V 3 mA
Load capacitance CB SDA pin 400 pF
Data format Straight binary
POWER-SUPPLY REQUIREMENTS
Power-supply voltage:
DVDD(2) 1.65 5.5 V
AVDD 2.2 5.5 V
IAVDD(4) tCYCLE = 2.5 ms, AVDD = 2.2 V 5 8 μA
IPWRD, power-down current <1 μA
TEMPERATURE RANGE
Specified performance –40 85 °C
CH0 to CH3 input pin capacitance.
DVDD cannot exceed AVDD.
Rate at which channels can be scanned. This is the minimum acquisition time (6 µs) and conversion time (4 µs).
See Figure 3 and Figure 4 for more information.

I2C Timing Requirements

MIN MAX UNIT
fSCL SCL operating frequency 0 0.4 MHz
tBUF Bus free time between START and STOP condition 1.3 μs
tHDSTA Hold time after repeated START condition.
After this period, the first clock is generated.
600 ns
tSUSTA Repeated START condition setup time 600 ns
tSUSTO Stop condition setup time 600 ns
tHDDAT Data hold time 0 ns
tSUDAT Data setup time 100 ns
tLOW SCL clock low period 1300 ns
tHIGH SCL clock high period 600 ns
tF Clock/data fall time 300 ns
tR Clock/data rise time 300 ns
tVDDAT Data valid time 0.9 μs
tVDACK Data valid acknowledge time 0.9 μs
tSP Pulse width of spike that must be suppressed by the input filter 0 50 ns
ADS7924 tim_i2c_bas482.gif
NOTE: S = Start, Sr = Repeated Start, and P = Stop.
Figure 1. I2C Timing Diagram

Typical Characteristics

At TA = 25°C, unless otherwise noted.
ADS7924 tc_iavdd-tmp_bas482.gif
Figure 2. Current vs Temperature
ADS7924 tc_pdiss-tcycle_5v_bas482.gif
Figure 4. Average Power Dissipation vs Cycle Time
ADS7924 tc_gerr-avdd_bas482.gif
Figure 6. Typical Gain Error vs AVDD Voltage
ADS7924 tc_oerr-tmp_bas482.gif
Figure 8. Offset Error Drift, Typical
ADS7924 tc_osc_f-avdd_bas482.gif
Figure 10. Internal Oscillator Frequency vs Voltage
ADS7924 tc_inl_5v_bas482.gif
Figure 12. Integral Nonlinearity
ADS7924 tc_dnl_5v_bas482.gif
Figure 14. Differential Nonlinearity
ADS7924 tc_dnl-tmp_bas482.gif
Figure 16. Differential Nonlinearity vs Temperature
ADS7924 tc_histo_noise_5v_bas482.gif
At code center
Figure 18. Noise Histogram
ADS7924 tc_pdiss-tcycle_22v_bas482.gif
Figure 3. Average Power Dissipation vs Cycle Time
ADS7924 tc_iavdd-vs_bas482.gif
Figure 5. Analog Supply Current vs Supply Voltage
ADS7924 tc_gerr_drift_bas482.gif
Figure 7. Gain Error Drift
ADS7924 tc_oerr-avdd_bas482.gif
Figure 9. Typical Offset Error vs AVDD Voltage
ADS7924 tc_inl_22v_bas482.gif
Figure 11. Integral Nonlinearity
ADS7924 tc_inl_err_drift_bas482.gif
Figure 13. Integral Linearity Error Drift
ADS7924 tc_dnl_22v_bas482.gif
Figure 15. Differential Nonlinearity
ADS7924 tc_histo_noise_22v_bas482.gif
At code center
Figure 17. Noise Histogram At code center.
At code center.