SBASAY5 June   2024 ADS8681W

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input Structure
      2. 6.3.2 Analog Input Impedance
      3. 6.3.3 Input Protection Circuit
      4. 6.3.4 Programmable Gain Amplifier (PGA)
      5. 6.3.5 Second-Order, Low-Pass Filter (LPF)
      6. 6.3.6 ADC Driver
      7. 6.3.7 Reference
        1. 6.3.7.1 Internal Reference
        2. 6.3.7.2 External Reference
      8. 6.3.8 ADC Transfer Function
      9. 6.3.9 Alarm Features
        1. 6.3.9.1 Input Alarm
        2. 6.3.9.2 AVDD Alarm
    4. 6.4 Device Functional Modes
      1. 6.4.1 Host-to-Device Connection Topologies
        1. 6.4.1.1 Single Device: All multiSPI Options
        2. 6.4.1.2 Single Device: Standard SPI Interface
        3. 6.4.1.3 Multiple Devices: Daisy-Chain Topology
      2. 6.4.2 Device Operational Modes
        1. 6.4.2.1 RESET State
        2. 6.4.2.2 ACQ State
        3. 6.4.2.3 CONV State
    5. 6.5 Programming
      1. 6.5.1 Data Transfer Frame
      2. 6.5.2 Input Command Word and Register Write Operation
      3. 6.5.3 Output Data Word
      4. 6.5.4 Data Transfer Protocols
        1. 6.5.4.1 Protocols for Configuring the Device
        2. 6.5.4.2 Protocols for Reading From the Device
          1. 6.5.4.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols With a Single SDO-x
          2. 6.5.4.2.2 Legacy, SPI-Compatible (SYS-xy-S) Protocols With Dual SDO-x
          3. 6.5.4.2.3 Source-Synchronous (SRC) Protocols
            1. 6.5.4.2.3.1 Output Clock Source Options
            2. 6.5.4.2.3.2 Output Bus Width Options
  8. Register Maps
    1. 7.1 Device Configuration and Register Maps
      1. 7.1.1 DEVICE_ID_REG Register (address = 00h)
      2. 7.1.2 RST_PWRCTL_REG Register (address = 04h)
      3. 7.1.3 SDI_CTL_REG Register (address = 08h)
      4. 7.1.4 SDO_CTL_REG Register (address = 0Ch)
      5. 7.1.5 DATAOUT_CTL_REG Register (address = 10h)
      6. 7.1.6 RANGE_SEL_REG Register (address = 14h)
      7. 7.1.7 ALARM_REG Register (address = 20h)
      8. 7.1.8 ALARM_H_TH_REG Register (address = 24h)
      9. 7.1.9 ALARM_L_TH_REG Register (address = 28h)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Alarm Function
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power Supply Decoupling
      2. 8.3.2 Power Saving
        1. 8.3.2.1 NAP Mode
        2. 8.3.2.2 Power-Down (PD) Mode
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

External Reference

The device provides a provision for applications that require a better reference voltage or a common reference voltage for multiple devices. This provision allows an external reference source to be used with an internal buffer to drive the ADC reference pin. To select the external reference mode, program the INTREF_DIS bit of the RANGE_SEL_REG register to logic 1. In this mode, apply an external 4.096V reference at the REFIO pin, which functions as an input. The internal buffer is optimally designed to handle the dynamic loading on the REFCAP pin that is internally connected to the ADC reference input. Thus, any low-power, low-drift, or small-size external reference is applicable in this mode. Appropriately filter the output of the external reference to minimize the resulting effect of the reference noise on system performance. Figure 6-12 shows a typical connection diagram for this mode.

ADS8681W ADS8685W ADS8689W Device Connections for
                              Using an External 4.096V ReferenceFigure 6-12 Device Connections for Using an External 4.096V Reference

The output of the internal reference buffer appears at the REFCAP pin. Place a 10µF minimum capacitance between the REFCAP and REFGND pins. Place another 1µF capacitor as close to the REFCAP pin as possible for decoupling high-frequency signals. Do not use the internal buffer to drive external ac or dc loads because of the limited current output capability of this buffer.

The performance of the internal buffer output is very stable across the entire operating temperature range of –40°C to +125°C. Figure 6-13 shows the variation in the REFCAP output across temperature for different values of the AVDD supply voltage. As shown in Figure 6-14, the typical specified value of the reference buffer drift over temperature is 0.5ppm/°C. The maximum specified temperature drift is equal to 2ppm/°C.

ADS8681W ADS8685W ADS8689W Reference Buffer
                                    Output (REFCAP) Variation vs Supply and Temperature
 
Figure 6-13 Reference Buffer Output (REFCAP) Variation vs Supply and Temperature
ADS8681W ADS8685W ADS8689W Reference Buffer
                                    Temperature Drift Histogram
AVDD = 5V, number of devices = 30, ΔT = –40°C to +125°C
Figure 6-14 Reference Buffer Temperature Drift Histogram