SBASAY5 June   2024 ADS8681W

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input Structure
      2. 6.3.2 Analog Input Impedance
      3. 6.3.3 Input Protection Circuit
      4. 6.3.4 Programmable Gain Amplifier (PGA)
      5. 6.3.5 Second-Order, Low-Pass Filter (LPF)
      6. 6.3.6 ADC Driver
      7. 6.3.7 Reference
        1. 6.3.7.1 Internal Reference
        2. 6.3.7.2 External Reference
      8. 6.3.8 ADC Transfer Function
      9. 6.3.9 Alarm Features
        1. 6.3.9.1 Input Alarm
        2. 6.3.9.2 AVDD Alarm
    4. 6.4 Device Functional Modes
      1. 6.4.1 Host-to-Device Connection Topologies
        1. 6.4.1.1 Single Device: All multiSPI Options
        2. 6.4.1.2 Single Device: Standard SPI Interface
        3. 6.4.1.3 Multiple Devices: Daisy-Chain Topology
      2. 6.4.2 Device Operational Modes
        1. 6.4.2.1 RESET State
        2. 6.4.2.2 ACQ State
        3. 6.4.2.3 CONV State
    5. 6.5 Programming
      1. 6.5.1 Data Transfer Frame
      2. 6.5.2 Input Command Word and Register Write Operation
      3. 6.5.3 Output Data Word
      4. 6.5.4 Data Transfer Protocols
        1. 6.5.4.1 Protocols for Configuring the Device
        2. 6.5.4.2 Protocols for Reading From the Device
          1. 6.5.4.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols With a Single SDO-x
          2. 6.5.4.2.2 Legacy, SPI-Compatible (SYS-xy-S) Protocols With Dual SDO-x
          3. 6.5.4.2.3 Source-Synchronous (SRC) Protocols
            1. 6.5.4.2.3.1 Output Clock Source Options
            2. 6.5.4.2.3.2 Output Bus Width Options
  8. Register Maps
    1. 7.1 Device Configuration and Register Maps
      1. 7.1.1 DEVICE_ID_REG Register (address = 00h)
      2. 7.1.2 RST_PWRCTL_REG Register (address = 04h)
      3. 7.1.3 SDI_CTL_REG Register (address = 08h)
      4. 7.1.4 SDO_CTL_REG Register (address = 0Ch)
      5. 7.1.5 DATAOUT_CTL_REG Register (address = 10h)
      6. 7.1.6 RANGE_SEL_REG Register (address = 14h)
      7. 7.1.7 ALARM_REG Register (address = 20h)
      8. 7.1.8 ALARM_H_TH_REG Register (address = 24h)
      9. 7.1.9 ALARM_L_TH_REG Register (address = 28h)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Alarm Function
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power Supply Decoupling
      2. 8.3.2 Power Saving
        1. 8.3.2.1 NAP Mode
        2. 8.3.2.2 Power-Down (PD) Mode
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Alarm Function

The ADS868xW features an input alarm and an AVDD alarm. For the input alarm, the low and high threshold values are user programmable and an input outside the specified range activates the alarm. The input alarm also incorporates hysteresis, which is also user programmable. This section focuses on the application of the user programmable input alarm thresholds and hysteresis using a negative-temperature-coefficient (NTC) thermistor for temperature sensing.

When temperature rises, the NTC thermistor resistance decreases. When temperature falls, the NTC thermistor resistance increases. Figure 8-3 shows a diagram the NTC thermistor placed in a voltage divider circuit with a sensing resistor. As indicated in this figure, Vout increases as temperature increases and decreases as temperature decreases. In a temperature-sensitive application, monitor if the temperature is too high or low. Program and adjust the input alarm thresholds to alert whether a system has gotten too hot in operation or is running abnormally cool.

ADS8681W ADS8685W ADS8689W Thermistor-Based Temperature Control Figure 8-3 Thermistor-Based Temperature Control

When the temperature fluctuates near the alarm thresholds, the temperature potentially goes beyond the programmed limits and falls back into the thresholds multiple times in succession. To prevent false triggering of the alarm resulting from noise or interference, apply and adjust the hysteresis that is applied to the signal.

Determine if the temperature is near the alarm high threshold. Ambient noise potentially causes the voltage measured to exceed this threshold momentarily. However, the actual temperature does not exceed the predetermined limit, and therefore causes a false alarm. If the temperature exceeds the predetermined limit and the voltage momentarily exceeds the alarm high threshold, no alarm is issued when an alarm is needed. This condition is caused by the ambient noise triggering the voltage measured to fall below the alarm high threshold. By applying and properly adjusting the amount of hysteresis, these situations are prevented. Furthermore, the noise immunity of the input alarm feature is improved to more accurately represent the temperature conditions of the system. Figure 8-4 depicts the alarm functionality when hysteresis is applied.

ADS8681W ADS8685W ADS8689W Alarm
                    Functionality With Hysteresis Figure 8-4 Alarm Functionality With Hysteresis