SBOS588B December   2011  – June 2019 AFE030

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Block Diagram
  4. Revision History
  5. Description, continued
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Electrical Characteristics: Transmitter (Tx), Tx_DAC
    5. 7.5  Electrical Characteristics: Transmitter (Tx), Tx_PGA
    6. 7.6  Electrical Characteristics: Transmitter (Tx), Tx_FILTER
    7. 7.7  Electrical Characteristics: Power Amplifier (PA)
    8. 7.8  Electrical Characteristics: Receiver (Rx), Rx PGA1
    9. 7.9  Electrical Characteristics: Receiver (Rx), Rx Filter
    10. 7.10 Electrical Characteristics: Receiver (Rx), Rx PGA2
    11. 7.11 Electrical Characteristics: Digital
    12. 7.12 Electrical Characteristics: Two-Wire Interface
    13. 7.13 Electrical Characteristics: Zero-Crossing Detector
    14. 7.14 Electrical Characteristics: Internal Bias Generator
    15. 7.15 Electrical Characteristics: Power Supply
    16. 7.16 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Timing Requirements
    2. 8.2 Timing Diagrams
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 PA Block
      2. 9.3.2 Tx Block
      3. 9.3.3 Rx Block
      4. 9.3.4 DAC Block
      5. 9.3.5 REF1 and REF2 Blocks
      6. 9.3.6 Zero Crossing Detector Block
      7. 9.3.7 ETx and ERx Blocks
    4. 9.4 Power Supplies
    5. 9.5 Pin Descriptions
      1. 9.5.1 Current Overload
      2. 9.5.2 Thermal Overload
    6. 9.6 Calibration Modes
      1. 9.6.1 Tx Calibration Mode
      2. 9.6.2 Rx Calibration Mode
    7. 9.7 Serial Interface
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
    3. 10.3 Line-Coupling Circuit
    4. 10.4 Circuit Protection
    5. 10.5 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 TINA-TI™ (Free Software Download)
        2. 11.1.1.2 TI Precision Designs
        3. 11.1.1.3 WEBENCH Filter Designer
      2. 11.1.2 Powerline Communications Developer’s Kit
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Overload

The AFE030 contains internal protection circuitry that automatically disables the PA output stage if the junction temperature exceeds +165°C. If a fault condition occurs that causes a thermal overload, and if the T_FLAG_EN bit (location 5 in the Control2 Register) is enabled, the T_FLAG bit (location 5 in the RESET Register) is set to a '1'. This configuration results in an interrupt signal at the INT pin. The AFE030 includes a thermal hysteresis and allows the PA to resume normal operation when the junction temperature reduces to 145°C. The T_FLAG bit remains set to a '1' even after the device returns to normal operation. The T_FLAG bit remains '1' until it is reset by the microprocessor.

If the T_FLAG_EN bit (location 5 in the Control2 Register) is disabled and a thermal overload condition occurs, the PA continues to go into thermal limit and protect the AFE030, but the contents of the T_FLAG bit (location 5 in the RESET Register) remain at the previous value (presumably '0' for normal operation), and the AFE030 does not issue an interrupt at the INT pin.

Once an interrupt is signaled (that is, INT goes low), the contents of the I_FLAG and T_FLAG bits can be read by the microprocessor to determine the type of interrupt that occurred. Using the Control2 Register, each interrupt type (current or thermal) can be individually enabled or disabled, allowing full user customization of the INT function. For proper operation of the interrupt pin it is recommended to configure the interrupt enable registers in the Control2 Register by writing to bit locations 5, 6, and 7 following the information in Table 9 after each time the AFE030 is powered on. Failure to properly configure bit locations 5, 6, and 7 after power on may result in unexpected interrupt signals.

Table 9 lists the register contents associated with each interrupt condition.

Table 9. Register Contents to Configure the Interrupt Pin

FUNCTION CONTROL2 REGISTER CONTENTS:
DETERMINE INTERRUPT PIN FUNCTIONALITY
I_FLAG_EN
(CURRENT OVERLOAD)
T_FLAG_EN
(THERMAL OVERLOAD)
D7 D6 D5
POR (default values) undefined 0 0
No interrupt 0 0 0
Interrupt on thermal overload only 0 0 1
Interrupt on current overload only 0 1 0
Interrupt on thermal or current overload 0 1 1

TSENSE Pin (10)

The TSENSE pin is internally connected to the anode of a temperature-sensing diode located within the PA output stage. Figure 45 shows a remote junction temperature sensor circuit that can be used to measure the junction temperature of the AFE030. Measuring the junction temperature of the AFE030 is optional and not required.

AFE030 ai_tmp411_temp_sense_bos588.gifFigure 45. Interfacing the TMP411 to the AFE030

Tx_FLAG (Pin 47)

The Tx_FLAG pin is an open drain output that indicates the readiness of the Tx signal path for transmission. When the Tx_FLAG pin is high, the transmit signal path is enabled and ready for transmission. When the Tx_FLAG pin is low, the transmit path is not ready for transmission.

Rx_FLAG (Pin 48)

The Rx_FLAG pin is an open drain output that indicates the readiness of the Rx signal path for transmission. When the Rx_FLAG pin is high, the transmit signal path is enabled and ready for transmission. When the Rx_FLAG pin is low, the transmit path is not ready for transmission.