SBOS531E August   2010  – June 2019 AFE031

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
  4. Revision History
  5. Description, continued
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Thermal Information
    4. 8.4  Electrical Characteristics: Transmitter (Tx)
    5. 8.5  Electrical Characteristics: Power Amplifier (PA)
    6. 8.6  Electrical Characteristics: Receiver (Rx)
    7. 8.7  Electrical Characteristics: Digital
    8. 8.8  Electrical Characteristics: Two-Wire Interface
    9. 8.9  Electrical Characteristics: Internal Bias Generator
    10. 8.10 Electrical Characteristics: Power Supply
    11. 8.11 Timing Requirements
    12. 8.12 Timing Diagrams
    13. 8.13 Typical Characteristics
  9. Detailed Description
    1. 9.1 Functional Block Diagram
    2. 9.2 Feature Description
      1. 9.2.1 PA Block
      2. 9.2.2 Tx Block
      3. 9.2.3 Rx Block
      4. 9.2.4 DAC Block
      5. 9.2.5 REF1 and REF2 Blocks
      6. 9.2.6 Zero Crossing Detector Block
      7. 9.2.7 ETx and ERx Blocks
    3. 9.3 Power Supplies
    4. 9.4 Pin Descriptions
      1. 9.4.1 Current Overload
      2. 9.4.2 Thermal Overload
    5. 9.5 Calibration Modes
      1. 9.5.1 Tx Calibration Mode
      2. 9.5.2 Rx Calibration Mode
    6. 9.6 Serial Interface
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Detailed Design Procedure
        1. 10.2.1.1 Line-Coupling Circuit
        2. 10.2.1.2 Circuit Protection
        3. 10.2.1.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Powerline Communications Developer’s Kit
        2. 11.1.2.2 TINA-TI™ (Free Software Download)
        3. 11.1.2.3 TI Precision Designs
        4. 11.1.2.4 WEBENCH Filter Designer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Zero Crossing Detector Block

The AFE031 includes two zero crossing detectors. Zero crossing detectors can be used to synchronize communications signals to the ac line or sources of noise. Typically, in single-phase applications, only a single zero crossing detector is used. In three-phase applications, both zero crossing detectors can be used; one component detects phase A, and one detects phase B. Phase C zero crossings can then be inferred from the data gathered from the other phases. Figure 37 shows the AFE031 configured for non-isolated zero crossing detection.

AFE031 ai_nonisolate_zero_xing_bos531.gifFigure 37. Non-Isolated Zero Crossing Detection Using the AFE031

Non-isolated zero crossing waveforms are shown in Figure 38.

AFE031 ai_tc_nonisolate_zc_bos531.gifFigure 38. Non-Isolated Zero Crossing Waveforms

For maximum protection of the AFE031 against line transients, it is recommended to use Schottky diodes as indicated in Figure 37. These diodes should limit the ZC_IN pins (pins 38 and 39) to within the maximum rating of (AVDD + 0.4 V) and (AGND – 0.4 V). Some applications may require an isolated zero crossing detection circuit. With a minimal amount of components, the AFE031 can be configured for isolated zero crossing detection, as Figure 39 shows.

AFE031 ai_isolate_zero_xing_bos531.gifFigure 39. Isolated Zero Crossing Detection Using the AFE031

Isolated zero crossing waveforms are shown in Figure 40.

AFE031 ai_tc_isolate_zc_bos531.gifFigure 40. Isolated Zero Crossing Waveforms