SLOS729D October 2011 – November 2015 AFE5808A
PRODUCTION DATA.
Proper grounding and bypassing, short lead length, and the use of ground and power-supply planes are particularly important for high-frequency designs. Achieving optimum performance with a high-performance device such as the AFE5808A requires careful attention to the PCB layout to minimize the effects of board parasitics and optimize component placement. A multilayer PCB usually ensures best results and allows convenient component placement. To maintain proper LVDS timing, all LVDS traces should follow a controlled impedance design. In addition, all LVDS trace lengths should be equal and symmetrical; TI recommends to keep trace length variations less than 150 mil (0.150 inch or 3.81 mm).
NOTE
To avoid noise coupling through supply pins, TI recommends to keep sensitive input pins, such as INM, INP, ACT pins aways from the AVDD 3.3 V and AVDD_5V planes. For example, either the traces or vias connected to these pins should NOT be routed across the AVDD 3.3 V and AVDD_5V planes, that is to avoid power planes under INM, INP, and ACT pins.
In addition, appropriate delay matching should be considered for the CW clock path, especially in systems with high channel count. For example, if clock delay is half of the 16x clock period, a phase error of 22.5°C could exist. Thus the timing delay difference among channels contributes to the beamformer accuracy.
Additional details on BGA PCB layout techniques can be found in the Texas Instruments Application Report, MicroStar BGA Packaging Reference Guide (SSYZ015), which can be downloaded from www.ti.com.