SBASAN5 july   2023 AFE7955

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Revision History
  6. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information AFE79xx
    5. 5.5  Transmitter Electrical Characteristics
    6. 5.6  RF ADC Electrical Characteristics
    7. 5.7  PLL/VCO/Clock Electrical Characteristics
    8. 5.8  Digital Electrical Characteristics
    9. 5.9  Power Supply Electrical Characteristics
    10. 5.10 Timing Requirements
    11. 5.11 Switching Characteristics
    12. 5.12 Typical Characteristics
      1. 5.12.1  TX Typical Characteristics 800 MHz
      2. 5.12.2  TX Typical Characteristics at 1.8 GHz
      3. 5.12.3  TX Typical Characteristics at 2.6 GHz
      4. 5.12.4  TX Typical Characteristics at 3.5 GHz
      5. 5.12.5  TX Typical Characteristics at 4.9 GHz
      6. 5.12.6  TX Typical Characteristics at 8.1 GHz
      7. 5.12.7  TX Typical Characteristics at 9.6 GHz
      8. 5.12.8  RX Typical Characteristics at 800 MHz
      9. 5.12.9  RX Typical Characteristics at 1.75-1.9 GHz
      10. 5.12.10 RX Typical Characteristics at 2.6 GHz
      11. 5.12.11 RX Typical Characteristics at 3.5 GHz
      12. 5.12.12 RX Typical Characteristics at 4.9 GHz
      13. 5.12.13 RX Typical Characteristics at 8.1GHz
      14. 5.12.14 RX Typical Characteristics at 9.6 GHz
      15. 5.12.15 PLL and Clock Typical Characteristics
  7. 6Device and Documentation Support
    1. 6.1 Receiving Notification of Documentation Updates
    2. 6.2 Support Resources
    3. 6.3 Trademarks
    4. 6.4 Electrostatic Discharge Caution
    5. 6.5 Glossary
  8. 7Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

RX Typical Characteristics at 2.6 GHz

Typical values at TA = +25°C, ADC Sampling Rate = 2949.12 GHz. Default conditions: output sample rate = 491.52 MSPS (decimate by 6), PLL clock mode with fREF = 491.52 MHz, AIN = –3 dBFS, DSA setting = 4 dB.

GUID-1A4BF536-826C-4356-BEF0-173B0A6BFE5D-low.gif
With matching, normalized to power at 2.6 GHz for each DSA setting
Figure 5-346 RX Inband Gain Flatness, fIN = 2600 MHz
GUID-20220908-SS0I-MST4-V6XH-4HJMHZLLCH3L-low.svg
With 2.6 GHz matching
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 5-348 RX Calibrated Integrated Phase Error vs DSA Setting at 2.6 GHz
GUID-B310683F-C6F2-45A3-B3C2-89CBCD3A2534-low.gif
With 2.6 GHz matching, 12.5-MHz offset from tone
Figure 5-350 RX Noise Spectral Density vs Temperature at 2.6 GHz
GUID-20220908-SS0I-7WMR-KK1G-QHC34GVRX9Z1-low.svg
With 2.6 GHz matching, 12.5-MHz offset from tone
Figure 5-352 RX Noise Spectral Density vs Input Amplitude and Channel at 2.6 GHz
GUID-D447FE2F-2A0B-4F79-A070-C211C1DCACD3-low.gif
With 2.6 GHz matching, tone spacing = 20 MHz, DSA = 4 dB
Figure 5-354 RX IMD3 vs Input Level and Temperature at 2.6 GHz
GUID-B545B55F-F8C6-4321-B0A3-3A60E106110F-low.svg
With 2.6 GHz matching, DDC bypass mode (TI only mode for characterization)
Figure 5-356 RX HD2 vs DSA Setting and Channel at 2.6 GHz
GUID-31A907C2-D7F0-429E-93CD-601D2A6AEFD9-low.svg
With 2.6 GHz matching, DDC bypass mode (TI only mode for characterization)
Figure 5-358 RX HD3 vs DSA Setting and Channel at 2.6 GHz
GUID-20220908-SS0I-ZSFW-XMCH-LKHCSDHZ6LRQ-low.svg
With 2.6 GHz matching, DDC bypass mode (TI only mode for characterization)
Figure 5-360 RX HD3 vs Input Level and Channel at 2.6 GHz
GUID-14B886E7-EDEF-4921-B913-413ED8A16C5E-low.gif
With 2.6 GHz matching, decimate by 4
Figure 5-362 RX In-Band SFDR (±300 MHz) vs Input Amplitude and Temperature at 2.6 GHz
GUID-20220908-SS0I-9TLS-WRQM-GMZQCF98XSQ5-low.svg
With 2.6 GHz matching, –7 dBFS each tone, 20-MHz tone spacing, all supplies at MIN, TYP, or MAX recommended operating voltages
Figure 5-364 RX IMD3 vs Supply and Channel at 2.6 GHz
GUID-20220908-SS0I-9VJS-00Q6-LHTTCWRQ0N5X-low.svg
With 2.6 GHz matching, normalized to fullscale at 25°C for each channel
Figure 5-347 RX Input Fullscale vs Temperature and Channel at 2.6 GHz
GUID-FEF00284-469A-40B9-A4ED-59EE6901A305-low.gif
With 2.6 GHz matching, fIN = 2610 MHz, AIN= –3 dBFS
Figure 5-349 RX Output FFT at 2.6 GHz
GUID-A523C358-2216-4C76-AB01-F88BB2AF4153-low.gif
With 2.6 GHz matching, DSA Setting = 12 dB, 12.5-MHz offset from tone
Figure 5-351 RX Noise Spectral Density vs Input Amplitude and Temperature at 2.6 GHz
GUID-6ECC8FA1-6D6B-46C3-A494-6F79CA13DAAA-low.gif
With 2.6 GHz matching, each tone –7 dBFS, tone spacing = 20 MHz
Figure 5-353 RX IMD3 vs DSA Setting and Temperature at 2.6 GHz
GUID-0EDB1EC1-B7EB-46AC-9A7D-BF5CFF5A563D-low.gif
With 2.6 GHz matching, tone spacing = 20 MHz, DSA = 12 dB
Figure 5-355 RX IMD3 vs Input Level and Temperature at 2.6 GHz
GUID-61C92D9D-42DD-487F-8D82-6E295553CBB7-low.gif
With 2.6 GHz matching, DDC bypass mode (TI only mode for characterization)
Figure 5-357 RX HD2 vs Input Level and Temperature at 2.6 GHz
GUID-07B6A6BB-27F5-4C4F-BDBA-1A8A3A58243F-low.gif
With 2.6 GHz matching, DDC bypass mode (TI only mode for characterization)
Figure 5-359 RX HD3 vs DSA Setting and Temperature at 2.6 GHz
GUID-0188BAAC-3FEB-4B4F-A75B-B679F684D5E4-low.gif
With 2.6 GHz matching, DDC bypass mode (TI only mode for characterization)
Figure 5-361 RX HD3 vs Input Level and Temperature at 2.6 GHz
GUID-49041B6D-D5B1-4417-83B6-6D375D065000-low.gif
With 2.6 GHz matching
Figure 5-363 RX Non-HD2/3 vs DSA Setting at 2.6 GHz
GUID-20220908-SS0I-XFBJ-6X2D-RCLN2DKJGHF5-low.svg
With 2.6 GHz matching, 12.5-MHz offset, all supplies at MIN, TYP, or MAX recommended operating voltages
Figure 5-365 RX Noise Spectral Density vs Supply and Channel at 2.6 GHz