SLASF43 December   2023 AFE782H1 , AFE882H1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements
    7. 5.7  Timing Diagrams
    8. 5.8  Typical Characteristics: VOUT DAC
    9. 5.9  Typical Characteristics: ADC
    10. 5.10 Typical Characteristics: Reference
    11. 5.11 Typical Characteristics: HART Modem
    12. 5.12 Typical Characteristics: Power Supply
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Digital-to-Analog Converter (DAC) Overview
        1. 6.3.1.1 DAC Resistor String
        2. 6.3.1.2 DAC Buffer Amplifier
        3. 6.3.1.3 DAC Transfer Function
        4. 6.3.1.4 DAC Gain and Offset Calibration
        5. 6.3.1.5 Programmable Slew Rate
        6. 6.3.1.6 DAC Register Structure and CLEAR State
      2. 6.3.2  Analog-to-Digital Converter (ADC) Overview
        1. 6.3.2.1 ADC Operation
        2. 6.3.2.2 ADC Custom Channel Sequencer
        3. 6.3.2.3 ADC Synchronization
        4. 6.3.2.4 ADC Offset Calibration
        5. 6.3.2.5 External Monitoring Inputs
        6. 6.3.2.6 Temperature Sensor
        7. 6.3.2.7 Self-Diagnostic Multiplexer
        8. 6.3.2.8 ADC Bypass
      3. 6.3.3  Programmable Out-of-Range Alarms
        1. 6.3.3.1 Alarm-Based Interrupts
        2. 6.3.3.2 Alarm Action Configuration Register
        3. 6.3.3.3 Alarm Voltage Generator
        4. 6.3.3.4 Temperature Sensor Alarm Function
        5. 6.3.3.5 Internal Reference Alarm Function
        6. 6.3.3.6 ADC Alarm Function
        7. 6.3.3.7 Fault Detection
      4. 6.3.4  IRQ
      5. 6.3.5  HART Interface
        1. 6.3.5.1  FIFO Buffers
          1. 6.3.5.1.1 FIFO Buffer Access
          2. 6.3.5.1.2 FIFO Buffer Flags
        2. 6.3.5.2  HART Modulator
        3. 6.3.5.3  HART Demodulator
        4. 6.3.5.4  HART Modem Modes
          1. 6.3.5.4.1 Half-Duplex Mode
          2. 6.3.5.4.2 Full-Duplex Mode
        5. 6.3.5.5  HART Modulation and Demodulation Arbitration
          1. 6.3.5.5.1 HART Receive Mode
          2. 6.3.5.5.2 HART Transmit Mode
        6. 6.3.5.6  HART Modulator Timing and Preamble Requirements
        7. 6.3.5.7  HART Demodulator Timing and Preamble Requirements
        8. 6.3.5.8  IRQ Configuration for HART Communication
        9. 6.3.5.9  HART Communication Using the SPI
        10. 6.3.5.10 HART Communication Using UART
        11. 6.3.5.11 Memory Built-In Self-Test (MBIST)
      6. 6.3.6  Internal Reference
      7. 6.3.7  Integrated Precision Oscillator
      8. 6.3.8  Precision Oscillator Diagnostics
      9. 6.3.9  One-Time Programmable (OTP) Memory
      10. 6.3.10 GPIO
      11. 6.3.11 Timer
      12. 6.3.12 Unique Chip Identifier (ID)
      13. 6.3.13 Scratch Pad Register
    4. 6.4 Device Functional Modes
      1. 6.4.1 DAC Power-Down Mode
      2. 6.4.2 Register Built-In Self-Test (RBIST)
      3. 6.4.3 Reset
    5. 6.5 Programming
      1. 6.5.1 Communication Setup
        1. 6.5.1.1 SPI Mode
        2. 6.5.1.2 UART Mode
        3. 6.5.1.3 SPI Plus UART Mode
        4. 6.5.1.4 HART Functionality Setup Options
      2. 6.5.2 GPIO Programming
      3. 6.5.3 Serial Peripheral Interface (SPI)
        1. 6.5.3.1 SPI Frame Definition
        2. 6.5.3.2 SPI Read and Write
        3. 6.5.3.3 Frame Error Checking
        4. 6.5.3.4 Synchronization
      4. 6.5.4 UART Interface
        1. 6.5.4.1 UART Break Mode (UBM)
          1. 6.5.4.1.1 Interface With FIFO Buffers and Register Map
      5. 6.5.5 Status Bits
      6. 6.5.6 Watchdog Timer
  8. Register Maps
    1. 7.1 AFEx82H1 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multichannel Configuration
    2. 8.2 Typical Application
      1. 8.2.1 4-mA to 20-mA Current Transmitter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Current Loop Control
          2. 8.2.1.2.2 HART Connections
          3. 8.2.1.2.3 Input Protection and Rectification
          4. 8.2.1.2.4 System Current Budget
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Setup
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RRU|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information
HART Connections

Connections of the HART signal to the loop are done through the AFE882H1 MOD_OUT and RX_IN pins. Similar to converting the VOUT pin voltage to the loop current magnitude, the HART output from the MOD_OUT pin is converted from a voltage to a current. A dc-blocking capacitor of 1000 pF is used to couple in the HART signal, without the dc output offset from the MOD_OUT pin. From MOD_OUT, the HART sinusoid nominal output is 500 mVPP. Equation 15 shows that this VMOD HART sinusoid voltage is set across a 499-kΩ resistor to create signal voltage VLOOPAC superimposed onto VLOOP–.

Equation 15. V L O O P _ A C = V M O D 499   k Ω   ×   20   k Ω   =   500   m V P P 499   k Ω   ×   20   k Ω =   20.04   m V P P  

The VLOOP_AC voltage sets the HART-modulated loop current that flows from ground to LOOP– through the 20-Ω resistor. This current is sourced from ground but controlled by the current sunk from Q4 coming from the start-up circuit. Equation 16 calculates the total loop current based on the 20 mVPP of VLOOP_AC.

Equation 16. I L O O P _ A C =   V L O O P _ A C × ( 1 20   Ω   +   1 20   k Ω   )   =   1   m A P P

Using the 1000-pF capacitor as a dc-blocking capacitor and the 499-kΩ resistor, the 500-mVPP MOD_OUT signal is converted to a 1-mAPP HART signal on the current loop.

HART signals are received by the AFE882H1 through the RX_IN pin. A dc-blocking capacitor for the HART input at RX_IN is shown with a series resistance of 1 kΩ in Figure 8-2. A diode clamps the pin to the device supply and the resistance limits the input current. This configuration protects the RX_IN from damage from an overvoltage event at the start up of the circuit.