SBASB13 December   2024 AMC0311S

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information (D Package)
    5. 6.5  Thermal Information (DWV Package)
    6. 6.6  Power Ratings 
    7. 6.7  Insulation Specifications (Basic Isolation)
    8. 6.8  Insulation Specifications (Reinforced Isolation)
    9. 6.9  Safety-Related Certifications (Basic Isolation)
    10. 6.10 Safety-Related Certifications (Reinforced Isolation)
    11. 6.11 Safety Limiting Values (D Package)
    12. 6.12 Safety Limiting Values (DWV Package)
    13. 6.13 Electrical Characteristics
    14. 6.14 Switching Characteristics
    15. 6.15 Timing Diagram
    16. 6.16 Insulation Characteristics Curves
    17. 6.17 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Isolation Channel Signal Transmission
      3. 7.3.3 Analog Output
    4. 7.4 Reference Input
    5. 7.5 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Filter Design
        2. 8.2.2.2 Connecting the REFIN pin
      3. 8.2.3 Application Curve
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

In a typical application, the high-side power supply (VDD1) for the AMC0x11S is generated from the low-side supply (VDD2) by an isolated DC/DC converter. A low-cost option is based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage ratings.

The AMC0x11S does not require any specific power-up sequencing. The high-side power supply (VDD1) is decoupled with a low-ESR, 100nF capacitor (C1) parallel to a low-ESR, 1μF capacitor (C2). The low-side power supply (VDD2) is equally decoupled with a low-ESR, 100nF capacitor (C3) parallel to a low-ESR, 1μF capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible. Figure 8-5 shows a decoupling diagram for the AMC0x11S.

AMC0311S AMC0211S Decoupling of the AMC0x11S Figure 8-5 Decoupling of the AMC0x11S

Capacitors must provide adequate effective capacitance under the applicable DC bias conditions experienced in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of the nominal capacitance under real-world conditions. Consider this factor when selecting these capacitors. This issue is especially acute in low-profile capacitors, in which the dielectric field strength is higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves that greatly simplify component selection.