SBAS427D February   2008  – June 2024 AMC1203

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5.   Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics
    10. 5.10 Switching Characteristics
    11. 5.11 Timing Diagram
    12. 5.12 Typical Characteristics
  8. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input
      2. 6.3.2 Modulator
      3. 6.3.3 Digital Output
    4. 6.4 Device Functional Modes
  9. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Shunt Resistor Sizing
        2. 7.2.2.2 Input Filter Design
        3. 7.2.2.3 Bitstream Filtering
      3. 7.2.3 Application Curve
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  10. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  11. Revision History
  12. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Application

Figure 7-1 shows the AMC1203 in a typical motor drive application. The load current flowing through an external shunt resistor RSHUNT produces a voltage drop sensed by the AMC1203. The AMC1203 digitizes the analog input signal on the high side. The device then transfers the data across the isolation barrier to the low side, and outputs the digital bitstream on the DOUT pin. The 5V high-side power supply (AVDD) is generated from the floating gate driver supply using a resistor (R4) and a Zener diode (D1). Use the 49.9Ω resistors on the CLKOUT and DOUT pins for line termination to improve signal integrity on the receiving end.

The differential input, digital output, and high common-mode transient immunity (CMTI) of the AMC1203 provide reliable and accurate operation even in high-noise environments.

AMC1203 Using the AMC1203 for Current Sensing in a
          Typical Application Figure 7-1 Using the AMC1203 for Current Sensing in a Typical Application