SBASAO0A May   2023  – September 2023 AMC130M03

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Insulation Specifications
    6. 6.6  Safety-Related Certifications
    7. 6.7  Safety Limiting Values
    8. 6.8  Electrical Characteristics
    9. 6.9  Timing Requirements
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagrams
    12. 6.12 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Noise Measurements
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Isolated DC/DC Converter
        1. 8.3.1.1 DC/DC Converter Failure Detection
      2. 8.3.2  High-Side Current Drive Capability
      3. 8.3.3  Isolation Channel Signal Transmission
      4. 8.3.4  Input ESD Protection Circuitry
      5. 8.3.5  Input Multiplexer
      6. 8.3.6  Programmable Gain Amplifier (PGA)
      7. 8.3.7  Voltage Reference
      8. 8.3.8  Internal Test Signals
      9. 8.3.9  Clocking and Power Modes
      10. 8.3.10 ΔΣ Modulator
      11. 8.3.11 Digital Filter
        1. 8.3.11.1 Digital Filter Implementation
          1. 8.3.11.1.1 Fast-Settling Filter
          2. 8.3.11.1.2 SINC3 and SINC3 + SINC1 Filter
        2. 8.3.11.2 Digital Filter Characteristic
      12. 8.3.12 Channel Phase Calibration
      13. 8.3.13 Calibration Registers
      14. 8.3.14 Register Map CRC
      15. 8.3.15 Temperature Sensor
        1. 8.3.15.1 Internal Temperature Sensor
        2. 8.3.15.2 External Temperature Sensor
        3. 8.3.15.3 Clock Selection for Temperature Sensor Operation
      16. 8.3.16 General-Purpose Digital Output (GPO)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Up and Reset
        1. 8.4.1.1 Power-On Reset
        2. 8.4.1.2 SYNC/RESET Pin
        3. 8.4.1.3 RESET Command
      2. 8.4.2 Start-Up Behavior After Power-Up
      3. 8.4.3 Start-Up Behavior After a Pin Reset or RESET Command
      4. 8.4.4 Start-Up Behavior After a Pause in CLKIN
      5. 8.4.5 Synchronization
      6. 8.4.6 Conversion Modes
        1. 8.4.6.1 Continuous-Conversion Mode
        2. 8.4.6.2 Global-Chop Mode
      7. 8.4.7 Power Modes
      8. 8.4.8 Standby Mode
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1  Chip Select (CS)
        2. 8.5.1.2  Serial Data Clock (SCLK)
        3. 8.5.1.3  Serial Data Input (DIN)
        4. 8.5.1.4  Serial Data Output (DOUT)
        5. 8.5.1.5  Data Ready (DRDY)
        6. 8.5.1.6  Conversion Synchronization or System Reset (SYNC/RESET)
        7. 8.5.1.7  SPI Communication Frames
        8. 8.5.1.8  SPI Communication Words
        9. 8.5.1.9  Short SPI Frames
        10. 8.5.1.10 Communication Cyclic Redundancy Check (CRC)
        11. 8.5.1.11 SPI Timeout
      2. 8.5.2 ADC Conversion Data Format
      3. 8.5.3 Commands
        1. 8.5.3.1 NULL (0000 0000 0000 0000)
        2. 8.5.3.2 RESET (0000 0000 0001 0001)
        3. 8.5.3.3 STANDBY (0000 0000 0010 0010)
        4. 8.5.3.4 WAKEUP (0000 0000 0011 0011)
        5. 8.5.3.5 LOCK (0000 0101 0101 0101)
        6. 8.5.3.6 UNLOCK (0000 0110 0101 0101)
        7. 8.5.3.7 RREG (101a aaaa annn nnnn)
          1. 8.5.3.7.1 Reading a Single Register
          2. 8.5.3.7.2 Reading Multiple Registers
        8. 8.5.3.8 WREG (011a aaaa annn nnnn)
      4. 8.5.4 ADC Output Buffer and FIFO Buffer
      5. 8.5.5 Collecting Data for the First Time or After a Pause in Data Collection
    6. 8.6 AMC130M03 Registers
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Unused Inputs and Outputs
      2. 9.1.2 Antialiasing
      3. 9.1.3 Minimum Interface Connections
      4. 9.1.4 Multiple Device Configuration
      5. 9.1.5 Calibration
      6. 9.1.6 Troubleshooting
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Voltage Measurement
        2. 9.2.2.2 Current Shunt Measurement
        3. 9.2.2.3 Temperature Measurement
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Noise Measurements

Adjust the data rate and gain to optimize the AMC130M03 noise performance. When averaging is increased by reducing the data rate, noise drops correspondingly. Table 7-1 summarizes the AMC130M03 noise performance using the 1.2-V internal reference and a 3.3-V power supply at the DVDD pin. Data are representative of typical noise performance at TA = 25°C when fCLKIN = 8.192 MHz. The clock divider is configured to the default setting (that is, the CLK_SEL[1:0] bits in the CLOCK register are set to 00b), thus the modulator clock frequency (fMOD) is equal to fCLKIN / 2. The data shown are typical input-referred noise results with the analog inputs shorted together and taking an average of multiple readings on channel 0. A minimum 1 second of consecutive readings are used to calculate the RMS noise for each reading. Table 7-2 lists the effective resolution calculated from the noise data. Equation 1 calculates effective resolution. VREF corresponds to the internal 1.2-V reference. In global-chop mode, noise improves by a factor of √2.

Noise performance scales with the OSR and gain settings, but is independent from the configured power mode. Thus, the device exhibits the same noise performance in different power modes when selecting the same OSR and gain settings. However, the data rate at the OSR settings scales based on the applied clock frequency for the different power modes.

Equation 1. GUID-616B3C3D-E080-4631-8BBF-7989C9FBF52E-low.gif
Table 7-1 Noise (µVRMS) at TA = 25°C, Channel 0
OSR DATA RATE (kSPS),
fCLKIN = 8.192 MHz
GAIN
1 2 4 8 16 32 64 128
16384 0.25 36.62 18.31 9.16 4.58 2.29 1.14 0.57 0.51
8192 0.5 36.62 18.31 9.16 4.58 2.29 1.55 1.07 0.92
4096 1 36.62 18.31 9.16 4.58 2.29 1.56 1.53 1.67
2048 2 36.62 18.31 9.16 4.58 2.46 1.68 1.56 1.85
1024 4 36.62 18.31 9.16 4.58 3.39 1.75 2.03 2.86
512 8 36.62 18.31 9.16 6.34 5.15 4.22 4.63 4.36
256 16 36.62 18.31 10.51 8.39 7.10 6.35 5.58 4.75
128 32 36.62 18.31 14.68 10.44 7.75 7.72 8.35 7.87
64 64 77.32 42.11 28.44 16.83 10.89 9.94 9.06 8.99
Table 7-2 Effective Resolution (Bits) at TA = 25°C, Channel 0
OSR DATA RATE (kSPS),
fCLKIN = 8.192 MHz
GAIN
1 2 4 8 16 32 64 128
16384 0.25 16.0 16.0 16.0 16.0 16.0 16.0 16.0 15.2
8192 0.5 16.0 16.0 16.0 16.0 16.0 15.6 15.1 14.3
4096 1 16.0 16.0 16.0 16.0 16.0 15.5 14.6 13.5
2048 2 16.0 16.0 16.0 16.0 15.9 15.4 14.6 13.3
1024 4 16.0 16.0 16.0 16.0 15.4 15.4 14.2 12.7
512 8 16.0 16.0 16.0 15.5 14.8 14.1 13.0 12.1
256 16 16.0 16.0 15.8 15.1 14.4 13.5 12.7 11.9
128 32 16.0 16.0 15.3 14.8 14.2 13.2 12.1 11.2
64 64 14.9 14.8 14.4 14.1 13.7 12.9 12.0 11.0