SBASAJ9B June   2022  – December 2024 AMC22C12-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information 
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications (Basic Isolation)
    7. 5.7  Safety-Related Certifications 
    8. 5.8  Safety Limiting Values 
    9. 5.9  Electrical Characteristics
    10. 5.10 Switching Characteristics 
    11. 5.11 Timing Diagrams
    12. 5.12 Insulation Characteristics Curves
    13. 5.13 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input
      2. 6.3.2 Reference Input
      3. 6.3.3 Isolation Channel Signal Transmission
      4. 6.3.4 Open-Drain Digital Output
        1. 6.3.4.1 Transparent Output Mode
        2. 6.3.4.2 Latch Output Mode
      5. 6.3.5 Power-Up and Power-Down Behavior
      6. 6.3.6 VDD1 Brownout and Power-Loss Behavior
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Overcurrent Detection
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
      2. 7.2.2 Overvoltage Detection
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curves
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The AMC22C12-Q1 is an isolated window comparator with a short response time. The open-drain output is separated from the input circuitry by an isolation barrier that is highly resistant to magnetic interference. This barrier is certified to provide galvanic isolation of up to 3kVRMS according to DIN EN IEC 60747-17 (VDE 0884-17) and UL1577, and supports a working voltage of up to 560VRMS.

The comparison window is centered around 0V, meaning that the comparator trips if the absolute value of the input voltage exceeds the trip threshold value. The trip threshold is adjustable from 20mV to 300mV through a single external resistor and, therefore, the comparison window ranges from ±20mV to ±300mV. When the voltage on the REF pin is greater than 550mV, the negative comparator is disabled and only the positive comparator is functional. The reference voltage in this mode can be as high as 2.7V. This mode is particularly useful for monitoring voltage supplies.

The open-drain output on the device supports transparent mode (LATCH input tied to GND2) where the output follows the input state, or latch mode, where the output is cleared on the falling edge of the latch input signal.

The AMC22C12-Q1 is available in an 8-pin SOIC package and is specified over the full automotive temperature range of –40°C to +125°C.

Package Information
PART NUMBERPACKAGE(1)PACKAGE SIZE(2)
AMC22C12-Q1D (SOIC, 8)4.9mm × 6mm
For all available packages, see the orderable addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable
AMC22C12-Q1 Typical Application Typical Application