SBASAQ0A March   2023  – December 2024 AMC23C15-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information 
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications (Reinforced Isolation)
    7. 5.7  Safety-Related Certifications 
    8. 5.8  Safety Limiting Values 
    9. 5.9  Electrical Characteristics 
    10. 5.10 Switching Characteristics 
    11. 5.11 Timing Diagrams
    12. 5.12 Insulation Characteristics Curves
    13. 5.13 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input
      2. 6.3.2 Reference Input
      3. 6.3.3 Isolation Channel Signal Transmission
      4. 6.3.4 Open-Drain Digital Outputs
      5. 6.3.5 Power-Up and Power-Down Behavior
      6. 6.3.6 VDD1 Brownout and Power-Loss Behavior
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Overcurrent and Short-Circuit Current Detection
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
      2. 7.2.2 Application Curves
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reference Input

The voltage on the REF pin determines the trip threshold of window comparator 1. The internal precision current source forces a 100μA current through an external resistor connected from the REF pin to GND1. The resulting voltage across the resistor (VREF) equals the magnitude of the positive and negative trip thresholds, see Figure 6-1. Place a 100nF capacitor parallel to the resistor to filter the reference voltage. This capacitor must be charged by the 100μA current source during power-up and the charging time can exceed the high-side blanking time (tHS,BLK). In this case, as shown in Figure 6-2, window comparator 1 can output an incorrect state after the high-side blanking time has expired until VREF reaches the final value. See the Power-Up and Power-Down Behavior section for more details on power-up behavior.

AMC23C15-Q1 Output Behavior for Long Settling Times of the Reference VoltageFigure 6-2 Output Behavior for Long Settling Times of the Reference Voltage

The voltage on the REF pin also determines the functionality of the negative comparators (Cmp1, Cmp3) and the hysteresis of the positive comparator (Cmp0) shown in the Functional Block Diagram. If VREF exceeds the VMSEL threshold defined in the Electrical Characteristics table, both negative comparators (Cmp1 and Cmp3) are disabled and the hysteresis of Cmp0 is increased from 4mV (typical) to 25mV. Positive-comparator mode is intended for voltage-monitoring applications that require higher input voltages and higher noise immunity.

The reference pin can be driven by an external voltage source to change the comparator thresholds during operation. However, do not drive VREF dynamically across the VMSEL threshold during normal operation because doing so changes the hysteresis of the Cmp0 comparator and can lead to unintentional switching of the OUT1 output.

Figure 6-3 shows a mode selection timing diagram.

AMC23C15-Q1 Mode SelectionFigure 6-3 Mode Selection