SBASA34B June   2020  – August 2024 AMC3330

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications 
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics
    10. 5.10 Switching Characteristics
    11. 5.11 Timing Diagram
    12. 5.12 Insulation Characteristics Curves
    13. 5.13 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Input
      2. 6.3.2 Isolation Channel Signal Transmission
      3. 6.3.3 Analog Output
      4. 6.3.4 Isolated DC/DC Converter
      5. 6.3.5 Diagnostic Output and Fail-Safe Behavior
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input Filter Design
        2. 7.2.2.2 Differential to Single-Ended Output Conversion
      3. 7.2.3 Application Curve
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

minimum and maximum specifications apply from TA = –40°C to +125°C, VDD = 3.0 V to 5.5 V, INP = –1 V to +1 V, and INN = HGND = 0 V; typical specifications are at TA = 25°C, and VDD = 3.3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
RIN Single-ended input resistance INN = HGND 0.1 0.8
RIND Differential input resistance 0.1 1.2
IIB Input bias current INP = INN = HGND, IIB = (IIBP + IIBN) / 2 –10 2.5 10 nA
TCIIB Input bias current drift –14 pA/°C
IIO Input offset current IIO = IINP – IINN; INP = INN = HGND –10 -0.8 10 nA
CIN Single-ended input capacitance INN = HGND, fIN = 310 kHz 2 pF
CIND Differential input capacitance fIN = 310 kHz 2
ANALOG OUTPUT
Nominal gain 2 V/V
VCMout Common-mode output voltage 1.39 1.44 1.49 V
VCLIPout Clipping differential output voltage VOUT = (VOUTP  VOUTN);
|VIN| = |VINP – VINN| > VClipping
±2.49 V
VFailsafe Failsafe differential output voltage V+ = (VOUTP – VOUTN); VDCDCout ≤ VDCDCUV or VHLDOout ≤ VHLDOUV –2.57 –2.5 V
BWOUT Output bandwidth 300 375 kHz
ROUT Output resistance On OUTP or OUTN 0.2 Ω
Output short-circuit current On OUTP or OUTN, sourcing or sinking, INP = INN = HGND, outputs shorted to either GND or VDD 14 mA
CMTI Common-mode transient immunity |HGND – GND| = 2 kV 85 135 kV/µs
ACCURACY
VOS Input offset voltage(1)(2) TA = 25°C, INP = INN = HGND –0.3 ±0.05 0.3 mV
TCVOS Input offset drift(1)(2)(4) –4 ±1 4 µV/°C
EG Gain error TA = 25°C –0.2% –0.08% 0.2%
TCEG Gain error drift(1)(5) –45 ±7 45 ppm/°C
Nonlinearity –0.02% 0.01% 0.02%
Nonlinearity drift 0.4 ppm/°C
SNR Signal-to-noise ratio VIN = 2 VPP, fIN = 1 kHz,
BW = 10 kHz, 10 kHz filter
81 85 dB
VIN = 2 VPP, fIN = 10 kHz,
BW = 100 kHz, 1 MHz filter
72
THD Total harmonic distortion(3) VIN = 2 Vpp, fIN = 10 kHz,
BW = 100 kHz
–84 dB
Output noise INP = INN = HGND, fIN = 0 Hz,
BW = 100 kHz
250 µVRMS
CMRR Common-mode rejection ratio fIN = 0 Hz, VCM min ≤ VCM VCM max –100 dB
fIN = 10 kHz, VCM min ≤ VCM VCM max –86
PSRR Power-supply rejection ratio VDD from 3.0 V to 5.5 V, at dc, input referred –98 dB
INP = INN = HGND, VDD from 3.0 V to 5.5 V, 10 kHz / 100 mV ripple, input referred –86
DIGITAL OUTPUT ( DIAG)
VOL Low-level output voltage ISINK= 4 mA 80 250 mV
ILKG Open-drain output leakage current VDD = 5V 5 100 nA
POWER SUPPLY
IDD Low-side supply current No external load on HLDO 28.5 41 mA
1 mA  external load on HLDO 30.5 43 mA
VDDUV VDD analog undervoltage detection threshold VDD rising 2.9 V
VDD falling 2.8
VDDPOR VDD digital reset threshold VDD rising 2.5 V
VDD falling 2.4
VDCDC_OUT DC/DC output voltage DCDC_OUT to HGND 3.1 3.5 4.65 V
VDCDCUV DC/DC output undervoltage detection threshold voltage DCDC output falling 2.1 2.25 V
VHLDO_OUT High-side LDO output voltage HLDO to HGND, up to 1 mA external load 3 3.2 3.4 V
VHLDOUV High-side LDO output undervoltage detection threshold voltage HLDO output falling 2.4 2.6 V
IH High-side supply current for auxiliary circuitry 3 V ≤ VDD < 4.5 V, load connected from HLDO_OUT to HGND, non-switching 1 mA
4.5 V ≤ VDD ≤ 5.5 V, load connected from HLDO_OUT to HGND, non-switching 4.3
tAS Analog settling time VDD step to 3.0 V, to OUTP and OUTN valid, 0.1% settling 0.6 1.1 ms
The typical value includes one standard deviation ("sigma") at nominal operating conditons.
This parameter is input referred.
THD is the ratio of the rms sum of the amplitues of first five higher harmonics to the amplitude of the fundamental.
Offset error temperature drift is calculated using the box method, as described by the following equation:
TCVOS = (VOS,MAX - VOS,MIN) / TempRange where VOS,MAX and VOS,MIN refer to the maximum and minimum VOS values measured within the temperature range (–40 to 125℃).
Gain error temperature drift is calculated using the box method, as described by the following equation:
TCEG (ppm) = ((EG,MAX - EG,MIN) / TempRange) x 104 where EG,MAX and EG,MIN refer to the maximum and minimum EG values (in %) measured within the temperature range (–40 to 125℃).