SWRS273D November   2021  – September 2024 AWR2944

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configurations and Functions
    1. 5.1 Pin Diagram
    2. 5.2 Pin Attributes
    3. 5.3 Signal Descriptions - Digital
    4. 5.4 Signal Descriptions - Analog
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Power-On Hours (POH)
    4. 6.4  Recommended Operating Conditions
    5. 6.5  VPP Specifications for One-Time Programmable (OTP) eFuses
      1. 6.5.1 Recommended Operating Conditions for OTP eFuse Programming
      2. 6.5.2 Hardware Requirements
      3. 6.5.3 Impact to Your Hardware Warranty
    6. 6.6  Power Supply Specifications
    7. 6.7  Power Consumption Summary
    8. 6.8  RF Specifications
    9. 6.9  Thermal Resistance Characteristics
    10. 6.10 Power Supply Sequencing and Reset Timing
    11. 6.11 Input Clocks and Oscillators
      1. 6.11.1 Clock Specifications
    12. 6.12 Peripheral Information
      1. 6.12.1  QSPI Flash Memory Peripheral
        1. 6.12.1.1 QSPI Timing Conditions
        2. 6.12.1.2 QSPI Timing Requirements #GUID-CD30070D-F132-4A2C-92CD-5AA96AE70B94/GUID-97D19708-D87E-443B-9ADF-1760CFEF6F4C #GUID-CD30070D-F132-4A2C-92CD-5AA96AE70B94/GUID-0A61EEC9-2B95-4C27-B219-18D27C8F9430
        3. 6.12.1.3 QSPI Switching Characteristics #GUID-20B35D26-AFE6-451C-B9E9-B3F2FA08097C/T4362547-64 #GUID-20B35D26-AFE6-451C-B9E9-B3F2FA08097C/T4362547-65
      2. 6.12.2  Multibuffered / Standard Serial Peripheral Interface (MibSPI)
        1. 6.12.2.1 MibSPI Peripheral Description
        2. 6.12.2.2 MibSPI Transmit and Receive RAM Organization
          1. 6.12.2.2.1 SPI Timing Conditions
          2. 6.12.2.2.2 SPI Controller Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input) #GUID-20BA2ACF-4FC2-43F6-960F-1A4CA56E65A6/T4362547-236 #GUID-20BA2ACF-4FC2-43F6-960F-1A4CA56E65A6/T4362547-237 #GUID-20BA2ACF-4FC2-43F6-960F-1A4CA56E65A6/T4362547-238
          3. 6.12.2.2.3 SPI Controller Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input) #GUID-517E5284-3345-461F-B07F-EB95741B1272/T4362547-244 #GUID-517E5284-3345-461F-B07F-EB95741B1272/T4362547-245 #GUID-517E5284-3345-461F-B07F-EB95741B1272/T4362547-246
        3. 6.12.2.3 SPI Peripheral Mode I/O Timings
          1. 6.12.2.3.1 SPI Peripheral Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output) #GUID-5C88F9F6-787B-49E2-984F-02158AB0C326/T4362547-70 #GUID-5C88F9F6-787B-49E2-984F-02158AB0C326/T4362547-71 #GUID-5C88F9F6-787B-49E2-984F-02158AB0C326/T4362547-73
      3. 6.12.3  Ethernet Switch (RGMII/RMII/MII) Peripheral
        1. 6.12.3.1  RGMII Timing Conditions
        2. 6.12.3.2  RGMII Transmit Clock Switching Characteristics
        3. 6.12.3.3  RGMII Transmit Data and Control Switching Characteristics
        4. 6.12.3.4  RGMII Receive Clock Timing Requirements
        5. 6.12.3.5  RGMII Receive Data and Control Timing Requirements
        6. 6.12.3.6  RMII Transmit Clock Switching Characteristics
        7. 6.12.3.7  RMII Transmit Data and Control Switching Characteristics
        8. 6.12.3.8  RMII Receive Clock Timing Requirements
        9. 6.12.3.9  RMII Receive Data and Control Timing Requirements
        10. 6.12.3.10 MII Transmit Switching Characteristics
        11. 6.12.3.11 MII Receive Clock Timing Requirements
        12. 6.12.3.12 MII Receive Timing Requirements
        13. 6.12.3.13 MII Transmit Clock Timing Requirements
        14. 6.12.3.14 MDIO Interface Timings
      4. 6.12.4  LVDS/Aurora Instrumentation and Measurement Peripheral
        1. 6.12.4.1 LVDS Interface Configuration
        2. 6.12.4.2 LVDS Interface Timings
      5. 6.12.5  UART Peripheral
        1. 6.12.5.1 SCI Timing Requirements
      6. 6.12.6  Inter-Integrated Circuit Interface (I2C)
        1. 6.12.6.1 I2C Timing Requirements #GUID-437677C7-D935-4733-A64D-553EFECA73F7/T4362547-185
      7. 6.12.7  Controller Area Network - Flexible Data-rate (CAN-FD)
        1. 6.12.7.1 Dynamic Characteristics for the CAN-FD TX and RX Pins
      8. 6.12.8  CSI2 Receiver Peripheral
        1. 6.12.8.1 CSI2 Switching Characteristics
      9. 6.12.9  Enhanced Pulse-Width Modulator (ePWM)
      10. 6.12.10 General-Purpose Input/Output
        1. 6.12.10.1 Switching Characteristics for Output Timing versus Load Capacitance (CL) #GUID-46919170-3C9C-440C-879B-A7700B77517D/T4362547-45 #GUID-46919170-3C9C-440C-879B-A7700B77517D/T4362547-50
    13. 6.13 Emulation and Debug
      1. 6.13.1 Emulation and Debug Description
      2. 6.13.2 JTAG Interface
        1. 6.13.2.1 Timing Requirements for IEEE 1149.1 JTAG
        2. 6.13.2.2 Switching Characteristics for IEEE 1149.1 JTAG
      3. 6.13.3 ETM Trace Interface
        1. 6.13.3.1 ETM TRACE Timing Requirements
        2. 6.13.3.2 ETM TRACE Switching Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Subsystems
      1. 7.3.1 RF and Analog Subsystem
        1. 7.3.1.1 RF Clock Subsystem
        2. 7.3.1.2 Transmit Subsystem
        3. 7.3.1.3 Receive Subsystem
      2. 7.3.2 Processor Subsystem
      3. 7.3.3 Automotive Interfaces
    4. 7.4 Other Subsystems
      1. 7.4.1 Hardware Accelerator Subsystem
      2. 7.4.2 Security – Hardware Security Module
      3. 7.4.3 ADC Channels (Service) for User Application
  9. Monitoring and Diagnostics
    1. 8.1 Monitoring and Diagnostic Mechanisms
  10. Applications, Implementation, and Layout
    1. 9.1 Application Information
    2. 9.2 Short and Medium Range Radar
    3. 9.3 Reference Schematic
  11. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 Device Nomenclature
    3. 10.3 Tools and Software
    4. 10.4 Documentation support
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Receiving Notification of Documentation Updates
    8. 10.8 Electrostatic Discharge Caution
    9. 10.9 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, XA2943BGALT). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Device development evolutionary flow:

    X Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
    P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
    null Production version of the silicon die that is fully qualified.

Support tool development evolutionary flow:

    TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.
    TMDS Fully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, your package), the temperature range (for example, blank is the default commercial temperature range), and the device speed range, in megahertz (for example, your device speed range). Figure x provides a legend for reading the complete device name for any your device device.

For orderable part numbers of your device devices in the your package package types, see the Package Option Addendum of this document, ti.com, or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the AWR2944 Errata

AWR2943 AWR2944 AWR2944LC Device Nomenclature Figure 10-1 Device Nomenclature