SLUSF49 January   2023 BQ21080

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Thermal Information
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 Battery Charging Process
        1. 8.1.1.1 Trickle Charge
        2. 8.1.1.2 Precharge
        3. 8.1.1.3 Fast Charge
        4. 8.1.1.4 Termination
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Based Dynamic Power Management (VINDPM)
      2. 8.3.2  Dynamic Power Path Management Mode (DPPM)
      3. 8.3.3  Battery Supplement Mode
      4. 8.3.4  SYS Power Control (SYS_MODE bit control)
        1. 8.3.4.1 SYS Pulldown Control
      5. 8.3.5  SYS Regulation
      6. 8.3.6  ILIM Control
      7. 8.3.7  Protection Mechanisms
        1. 8.3.7.1 Input Overvoltage Protection
        2. 8.3.7.2 Battery Undervoltage Lockout
        3. 8.3.7.3 System Overvoltage Protection
        4. 8.3.7.4 System Short Protection
        5. 8.3.7.5 Battery Overcurrent Protection
        6. 8.3.7.6 Safety Timer and Watchdog Timer
        7. 8.3.7.7 Thermal Protection and Thermal Regulation
      8. 8.3.8  Pushbutton Wake and Reset Input
        1. 8.3.8.1 Pushbutton Wake or Short Button Press Functions
        2. 8.3.8.2 Pushbutton Reset or Long Button Press Functions
      9. 8.3.9  15-Second Timeout for HW Reset
      10. 8.3.10 Hardware Reset
      11. 8.3.11 Software Reset
      12. 8.3.12 Interrupt Indicator (/INT) Pin
      13. 8.3.13 External NTC Monitoring (TS)
        1. 8.3.13.1 TS Biasing and Function
      14. 8.3.14 I2C Interface
        1. 8.3.14.1 F/S Mode Protocol
    4. 8.4 Device Functional Modes
    5. 8.5 Register Maps
      1. 8.5.1 I2C Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input (IN/SYS) Capacitors
        2. 9.2.2.2 TS
        3. 9.2.2.3 Recommended Passive Components
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

F/S Mode Protocol

The controller initiates a data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 8-6. All I2C-compatible devices should recognize a start condition.

GUID-B8C2B59D-9970-49A1-9CC9-BD7A3E7294BD-low.gifFigure 8-6 START and STOP Condition

The controller then generates the SCL pulses, and transmits the 8-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the controller ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 8-7). All devices recognize the address sent by the controller and compare it to their internal fixed addresses. Only the peripheral device with a matching address generates an acknowledge (see Figure 8-8) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the controller knows that communication link with a peripheral has been established.

GUID-2ABE00A5-282F-4713-B04F-ED084AAA0F07-low.gifFigure 8-7 Bit Transfer on the Serial Interface

The controller generates further SCL cycles to either transmit data to the peripheral (R/W bit 0) or receive data from the peripheral (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the controller or by the peripheral, depending on which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To signal the end of the data transfer, the controller generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 8-6). This releases the bus and stops the communication link with the addressed peripheral. All I2C compatible devices must recognize the stop condition. Upon receipt of a stop condition, all devices know that the bus is released, and wait for a start condition followed by a matching address. If a transaction is terminated prematurely, the controller needs to send a STOP condition to prevent the peripheral I2C logic from remaining in an incorrect state. Attempting to read data from register addresses not listed in this section results in FFh being read out.

Figure 8-8 Acknowledge on the I2C Bus
Figure 8-9 Bus Protocol