SLUSAB0D October   2010  – April 2016

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Device Comparisons
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Input Voltage Protection
        1. 9.3.1.1 Input Overvoltage Protection
        2. 9.3.1.2 Bad Adaptor Detection/Rejection
        3. 9.3.1.3 Sleep Mode
        4. 9.3.1.4 Input Voltage Based DPM (Special Charger Voltage Threshold)
      2. 9.3.2 Battery Protection
        1. 9.3.2.1 Output Overvoltage Protection
        2. 9.3.2.2 Battery Short Protection
        3. 9.3.2.3 Battery Detection at Power Up in 15-minute Mode (bq24153A/6A only)
        4. 9.3.2.4 Battery Detection in Host Mode
      3. 9.3.3 15-Minute Safety Timer and 32-second Watchdog Timer in Charge Mode
      4. 9.3.4 USB Friendly Power Up
      5. 9.3.5 Input Current Limiting at Power Up
    4. 9.4 Device Functional Modes
      1. 9.4.1 Charge Mode Operation
        1. 9.4.1.1 Charge Profile
      2. 9.4.2 PWM Controller in Charge Mode
      3. 9.4.3 Battery Charging Process
      4. 9.4.4 Thermal Regulation and Protection
      5. 9.4.5 Charge Status Output, STAT Pin
      6. 9.4.6 Control Bits in Charge Mode
        1. 9.4.6.1 CE Bit (Charge Mode)
        2. 9.4.6.2 RESET Bit
        3. 9.4.6.3 OPA_Mode Bit
      7. 9.4.7 Control Pins in Charge Mode
        1. 9.4.7.1 CD Pin (Charge Disable)
        2. 9.4.7.2 SLRST Pin (Safety Limit Register 06H Reset, bq24156A/9 only)
      8. 9.4.8 BOOST Mode Operation (bq24153A/8 only)
        1. 9.4.8.1 PWM Controller in Boost Mode
        2. 9.4.8.2 Boost Start Up
        3. 9.4.8.3 PFM Mode at Light Load
        4. 9.4.8.4 Safety Timer in Boost Mode
        5. 9.4.8.5 Protection in Boost Mode
          1. 9.4.8.5.1 Output Overvoltage Protection
          2. 9.4.8.5.2 Output Overload Protection
          3. 9.4.8.5.3 Battery Overvoltage Protection
        6. 9.4.8.6 STAT Pin in Boost Mode
      9. 9.4.9 High Impedance (HI-Z) Mode
    5. 9.5 Programming
      1. 9.5.1 Serial Interface Description
        1. 9.5.1.1 F/S Mode Protocol
        2. 9.5.1.2 H/S Mode Protocol
        3. 9.5.1.3 I2C Update Sequence
        4. 9.5.1.4 Slave Address Byte
        5. 9.5.1.5 Register Address Byte
    6. 9.6 Register Maps
      1. 9.6.1 Status/Control Register [Memory Location: 00, Reset State: x1xx 0xxx]
      2. 9.6.2 Control Register [Memory Location: 01, Reset State: 0011 0000]
      3. 9.6.3 Control/Battery Voltage Register [Memory Location: 02, Reset State: 0000 1010]
      4. 9.6.4 Vender/Part/Revision Register [Memory Location: 03, Reset State: 0101 000x]
      5. 9.6.5 Battery Termination/Fast Charge Current Register [Memory Location: 04, Reset State: 0000 000]
      6. 9.6.6 Special Charger Voltage/Enable Pin Status Register [Memory location: 05, Reset state: 001X X100]
      7. 9.6.7 Safety Limit Register [Memory location: 06, Reset state: 01000000]
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Systems Design Specifications
        2. 10.2.2.2 Charge Current Sensing Resistor Selection Guidelines
        3. 10.2.2.3 Output Inductor and Capacitance Selection Guidelines
      3. 10.2.3 Application Curves
    3. 10.3 System Example
  11. 11Power Supply Recommendations
    1. 11.1 System Load After Sensing Resistor
    2. 11.2 System Load Before Sensing Resistor
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Current Path
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information
    1. 14.1 Package Summary
      1. 14.1.1 Chip Scale Packaging Dimensions

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The bq24153A/6A/8/9 is a compact, flexible, high-efficiency, USB-friendly, switch-mode charge management solution for single-cell Li-ion and Li-polymer batteries used in a wide range of portable applications. The devices integrate a synchronous PWM controller, power MOSFETs, input current sensing, high-accuracy current and voltage regulation, and charge termination, into a small DSBGA package. The charge parameters can be programmed through an I2C interface.

10.2 Typical Application

VBUS = 5 V, ICHARGE = 1250 mA, VBAT = 3.5 V to 4.44 V (Adjustable).

bq24153A bq24156A bq24158 bq24159 app_cir1_lusab0.gif Figure 25. I2C Controlled 1-Cell USB Charger Application Circuit with USB OTG Support.

10.2.1 Design Requirements

Use the following typical application design procedure to select external components values for the bq24153A/6A/8/9 device.

Table 10. Design Parameters

SPECIFICATIONS TEST CONDITIONS MIN TYP MAX UNIT
Input DC voltage, VIN Input voltage from AC adapter input 4 5 6 V
Input current Maximum input current from AC adapter input 0.1 0.1 to 0.5 1.5 A
Charge current Battery charge current 0.325 0.7 1.55 A
Output regulation voltage Voltage applied to VBAT 0 0.3 to 4.2 4.44 V
Operating junction temperature range, TJ 0 125 °C

10.2.2 Detailed Design Procedure

10.2.2.1 Systems Design Specifications

  • VBUS = 5 V
  • VBAT = 4.2 V (1-Cell)
  • I(charge) = 1.25 A
  • Inductor ripple current = 30% of fast charge current
  1. Determine the inductor value (LOUT) for the specified charge current ripple:
  2. bq24153A bq24156A bq24158 bq24159 q_lo_vbat_lus824.gif , the worst case is when battery voltage is as close as to half of the input voltage.

    Equation 1. bq24153A bq24156A bq24158 bq24159 q_lo_25_lus824.gif

    LOUT = 1.11 μH

    Select the output inductor to standard 1 μH. Calculate the total ripple current with using the 1-μH inductor:

    Equation 2. bq24153A bq24156A bq24158 bq24159 q_dlo_vbat_lus824.gif
    Equation 3. bq24153A bq24156A bq24158 bq24159 q_dlo_25_lus824.gif

    ΔIL = 0.42 A

    Calculate the maximum output current:

    Equation 4. bq24153A bq24156A bq24158 bq24159 q_lpk_io_lus824.gif
    Equation 5. bq24153A bq24156A bq24158 bq24159 q_lpk_125_lus824.gif

    ILPK = 1.46 A

    Select 2.5mm by 2mm 1-μH 1.5-A surface mount multi-layer inductor. The suggested inductor part numbers are shown as following.

    Table 11. Inductor Part Numbers(1)

    PART NUMBER INDUCTANCE SIZE MANUFACTURER
    LQM2HPN1R0MJ0 1 μH 2.5 x 2.0 mm Murata
    MIPS2520D1R0 1 μH 2.5 x 2.0 mm FDK
    MDT2520-CN1R0M 1 μH 2.5 x 2.0 mm TOKO
    CP1008 1 μH 2.5 x 2.0 mm Inter-Technical
    (1) See Third-Party Products discalimer
  3. Determine the output capacitor value (COUT) using 40 kHz as the resonant frequency:
  4. Equation 6. bq24153A bq24156A bq24158 bq24159 q_fo_lus824.gif
    Equation 7. bq24153A bq24156A bq24158 bq24159 q_cout_1_lus824.gif
    Equation 8. bq24153A bq24156A bq24158 bq24159 q_cout_2_lus824.gif

    COUT = 15.8 μF

    Select two 0603 X5R 6.3V 10-μF ceramic capacitors in parallel i.e., Murata GRM188R60J106M.

  5. Determine the sense resistor using the following equation:
  6. Equation 9. bq24153A bq24156A bq24158 bq24159 q_rsns_vsns_lus824.gif

    The maximum sense voltage across the sense resistor is 85 mV. In order to get a better current regulation accuracy, V(RSNS) should equal 85mV, and calculate the value for the sense resistor.

    Equation 10. bq24153A bq24156A bq24158 bq24159 q_rsns_85_lus824.gif

    R(SNS) = 68 mΩ

    This is a standard value. If it is not a standard value, then choose the next close value and calculate the real charge current. Calculate the power dissipation on the sense resistor:

    P(RSNS) = I(CHARGE) 2 × R(SNS)

    P(RSNS) = 1.252 × 0.068

    P(RSNS) = 0.106 W

    Select 0402 0.125-W 68-mΩ 2% sense resistor, i.e. Panasonic ERJ2BWGR068.

  7. Measured efficiency and total power loss with different inductors are shown in Figure 26 and Figure 27. SW node and inductor current waveform are shown in Figure 2.
bq24153A bq24156A bq24158 bq24159 batt_charge_eff_lusab0.gif
TA = 25°C VBUS = 5 V VBAT = 3 V
Figure 26. Measured Battery Charge Efficiency
bq24153A bq24156A bq24158 bq24159 pwr_loss_lusab0.gif
TA = 25°C VBUS = 5 V VBAT = 3 V
Figure 27. Measured Battery Charge Loss

10.2.2.2 Charge Current Sensing Resistor Selection Guidelines

Both the termination current range and charge current range depend on the sensing resistor (RSNS). The termination current step (IOTERM_STEP) can be calculated using Equation 11:

Equation 11. bq24153A bq24156A bq24158 bq24159 q_ioterm_lus824.gif

Table 12 shows the termination current settings for three sensing resistors.

Table 12. Termination Current Settings for 55-mΩ, 68-mΩ, 100-mΩ Sense Resistors

BIT VI(TERM) (mV) I(TERM) (mA)
R(SNS) = 55mΩ
I(TERM) (mA)
R(SNS) = 68mΩ
I(TERM) (mA)
R(SNS) = 100mΩ
VI(TERM2) 13.6 247 200 136
VI(TERM1) 6.8 124 100 68
VI(TERM0) 3.4 62 50 34
Offset 3.4 62 50 34

For example, with a 68-mΩ sense resistor, V(ITERM2)=1, V(ITERM1)=0, and V(ITERM0)=1, ITERM = [ (13.6mV x 1) + (6.8mV x 0) + (3.4mV x 1) + 3.4mV ] / 68mΩ = 200mA + 0 + 50mA + 50mA = 300mA.

The charge current step (IO(CHARGE_STEP)) is calculated using Equation 12:

Equation 12. bq24153A bq24156A bq24158 bq24159 q_iochg_lus824.gif

Table 13 shows the charge current settings for three sensing resistors.

Table 13. Charge Current Settings for 55-mΩ, 68-mΩ and 100-mΩ Sense Resistors

BIT VI(REG) (mV) IO(CHARGE) (mA)
R(SNS) = 55mΩ
IO(CHARGE) (mA)
R(SNS) = 68mΩ
IO(CHARGE) (mA)
R(SNS) = 100mΩ
bq24156A
bq24159
bq24153A
bq24158
bq24156A
bq24159
bq24153A
bq24158
bq24156A
bq24159
bq24153A
bq24158
bq24156A
bq24159
bq24153A
bq24158
VI(CHRG3) 54.4 27.2 989 495 800 400 544 272
VI(CHRG2) 27.2 13.6 495 247 400 200 272 136
VI(CHRG1) 13.6 6.8 247 124 200 100 136 68
VI(CHRG0) 6.8 n/a 124 n/a 100 n/a 68 n/a
Offset 37.4 37.4 680 680 550 550 374 374

Using bq24156A as an example, with a 68-mΩ sense resistor, V(CHRG3)=1, V(CHRG2)=0, V(ICHRG1)=0, and V(ICHRG0)=1, ITERM = [ (54.4mV x 1) + (27.2mV x 0) + (13.6mV x 0) + (6.8mV x 1) + 37.4mV ] / 68mΩ = 800mA + 0 + 0 + 100mA = 900mA.

10.2.2.3 Output Inductor and Capacitance Selection Guidelines

The IC provides internal loop compensation. With the internal loop compensation, the highest stability occurs when the LC resonant frequency, fo, is approximately 40 kHz (20 kHz to 80 kHz). Equation 13 can be used to calculate the value of the output inductor, LOUT, and output capacitor, COUT.

Equation 13. bq24153A bq24156A bq24158 bq24159 q_fo_lus824.gif

To reduce the output voltage ripple, a ceramic capacitor with the capacitance between 4.7 μF and 47 μF is recommended for COUT, see the application section for components selection.

10.2.3 Application Curves

Using circuit shown in Figure 25, TA = 25°C, unless otherwise specified.

bq24153A bq24156A bq24158 bq24159 adp1_ins_lusa27.gif
VBUS = 0-5V, Iin_limit = 500mA, Voreg = 4.2V
VBAT = 3.5V, ICHG = 550mA, 32S mode
Figure 28. Adapter Insertion
bq24153A bq24156A bq24158 bq24159 pwrup_153_lusa27.gif
VBUS = 5V, No Battery Connected
Figure 30. Battery Detection at Power Up (bq24153A/6A)
bq24153A bq24156A bq24158 bq24159 boost1_pwm_lusa27.gif
VBUS = 5.05 V, VBAT = 3.5V, IBUS = 217 mA
Figure 32. BOOST Waveform (PWM Mode)
bq24153A bq24156A bq24158 bq24159 stp1_up_res_lusa27.gif
VBUS = 5.05 V, VBAT = 3.5V, IBUS = 0-217 mA
Figure 34. Load Step Up Response (BOOST Mode)
bq24153A bq24156A bq24158 bq24159 bat1_ins_rm_lusa27.gif
VBUS = 5 V, VBAT = 3.4V, Iin_limit = 500 mA
(32s Mode)
Figure 29. Battery Insertion/Removal
bq24153A bq24156A bq24158 bq24159 pwrup_158_lusa27.gif
VBUS = 5V, No Battery Connected
Figure 31. Battery Detection at Power Up (bq24158/9)
bq24153A bq24156A bq24158 bq24159 boost1_pfm_lusa27.gif
VBUS = 5.05 V, VBAT = 3.5V, IBUS = 42 mA
Figure 33. BOOST Waveform (PFM Mode)
bq24153A bq24156A bq24158 bq24159 stp1_dwn_res_lusa27.gif
VBUS = 5.05 V, VBAT = 3.5V, IBUS = 217 mA
Figure 35. Load Step Down Response (BOOST Mode)

10.3 System Example

VBUS = 5 V, ICHARGE = 1550 mA, Vbat = 3.5 V to 4.44 V (adjustable).

bq24153A bq24156A bq24158 bq24159 app2_cir_lusab0.gif Figure 36. I2C Controlled 1-Cell Charger Application Circuit with External Safety Limit Register Control