SLUSBP6D september   2013  – april 2023 BQ24296 , BQ24297

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings #GUID-BA2DB09A-966C-4324-B633-1AB165FC219B/SLUSBC14058
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Device Power Up
        1. 9.3.1.1 Power-On-Reset (POR)
        2. 9.3.1.2 Power Up from Battery without DC Source
          1. 9.3.1.2.1 BATFET Turn Off
          2. 9.3.1.2.2 Shipping Mode
        3. 9.3.1.3 Power Up from DC Source
          1. 9.3.1.3.1 REGN LDO
          2. 9.3.1.3.2 Input Source Qualification
          3. 9.3.1.3.3 Input Current Limit Detection
          4. 9.3.1.3.4 D+/D– Detection Sets Input Current Limit (BQ24297)
          5. 9.3.1.3.5 PSEL/OTG Pins Set Input Current Limit
          6. 9.3.1.3.6 HIZ State with 100mA USB Host
          7. 9.3.1.3.7 Force Input Current Limit Detection
        4. 9.3.1.4 Converter Power-Up
        5. 9.3.1.5 Boost Mode Operation from Battery
      2. 9.3.2 Power Path Management
        1. 9.3.2.1 Narrow VDC Architecture
        2. 9.3.2.2 Dynamic Power Management
        3. 9.3.2.3 Supplement Mode
      3. 9.3.3 Battery Charging Management
        1. 9.3.3.1 Autonomous Charging Cycle
        2. 9.3.3.2 Battery Charging Profile
        3. 9.3.3.3 Thermistor Qualification
          1. 9.3.3.3.1 Cold/Hot Temperature Window
        4. 9.3.3.4 Charging Termination
          1. 9.3.3.4.1 Termination When REG02[0] = 1
        5. 9.3.3.5 Charging Safety Timer
          1. 9.3.3.5.1 Safety Timer Configuration Change
        6. 9.3.3.6 USB Timer When Charging from USB100mA Source
      4. 9.3.4 Status Outputs ( PG, STAT, and INT)
        1. 9.3.4.1 Power Good Indicator ( PG) (BQ24296)
        2. 9.3.4.2 Charging Status Indicator (STAT)
        3. 9.3.4.3 Interrupt to Host (INT)
      5. 9.3.5 Protections
        1. 9.3.5.1 Input Current Limit on ILIM
        2. 9.3.5.2 Thermal Regulation and Thermal Shutdown
        3. 9.3.5.3 Voltage and Current Monitoring in Buck Mode
          1. 9.3.5.3.1 Input Over-Voltage (ACOV)
          2. 9.3.5.3.2 System Over-Voltage Protection (SYSOVP)
        4. 9.3.5.4 Voltage and Current Monitoring in Boost Mode
          1. 9.3.5.4.1 Over-Current Protection
          2. 9.3.5.4.2 VBUS Over-Voltage Protection
        5. 9.3.5.5 Battery Protection
          1. 9.3.5.5.1 Battery Over-Voltage Protection (BATOVP)
          2. 9.3.5.5.2 Battery Short Protection
          3. 9.3.5.5.3 System Over-Current Protection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Host Mode and Default Mode
        1. 9.4.1.1 Plug in USB100mA Source with Good Battery
        2. 9.4.1.2 USB Timer When Charging from USB100mA Source
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
        1. 9.5.1.1 Data Validity
        2. 9.5.1.2 START and STOP Conditions
        3. 9.5.1.3 Byte Format
        4. 9.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 9.5.1.5 Target Address and Data Direction Bit
          1. 9.5.1.5.1 Single Read and Write
          2. 9.5.1.5.2 Multi-Read and Multi-Write
    6. 9.6 Register Map
      1. 9.6.1 I2C Registers
        1. 9.6.1.1  Input Source Control Register REG00 [reset = 00110xxx, or 3x]
        2. 9.6.1.2  Power-On Configuration Register REG01 [reset = 00011011, or 0x1B]
        3. 9.6.1.3  Charge Current Control Register REG02 [reset = 01100000, or 60]
        4. 9.6.1.4  Pre-Charge/Termination Current Control Register REG03 [reset = 00010001, or 0x11]
        5. 9.6.1.5  Charge Voltage Control Register REG04 [reset = 10110010, or 0xB2]
        6. 9.6.1.6  Charge Termination/Timer Control Register REG05 [reset = 10011010, or 0x9A]
        7. 9.6.1.7  Boost Voltage/Thermal Regulation Control Register REG06 [reset = 01110011, or 0x73]
        8. 9.6.1.8  Misc Operation Control Register REG07 [reset = 01001011, or 4B]
        9. 9.6.1.9  System Status Register REG08
        10. 9.6.1.10 New Fault Register REG09
        11. 9.6.1.11 Vender / Part / Revision Status Register REG0A
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Inductor Selection
        2. 10.2.2.2 Input Capacitor
        3. 10.2.2.3 Output Capacitor
      3. 10.2.3 Application Performance Plots
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

GUID-9FDE1FDD-8586-4753-AAD5-D6411C179A08-low.gif Figure 7-1 24-Pin VQFNRGE Package(Top View)
GUID-6B640284-F4D8-4FC7-AA71-31B59F76AB20-low.gif Figure 7-2 24-Pin VQFNRGE Package(Top View)
Table 7-1 Pin Functions
PIN NUMBER TYPE DESCRIPTION
BQ24296 BQ24297
VBUS VBUS 1,24 P Charger Input Voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID with VBUS on source. Place a 1-µF ceramic capacitor from VBUS to PGND and place it as close as possible to IC.
PSEL PSEL 2 I Power source selection input. High indicates a USB host source and Low indicates an adapter source.
D+ 2 I
Analog
Positive line of the USB data line pair. D+/D– based USB host/charging port detection. The detection includes data contact detection (DCD), primary detection in bc1.2, and non-standard adapters.
PG 3 O Open drain active low power good indicator. Connect to the pull up rail via 10-kΩ resistor. LOW indicates a good input source if the input voltage is between UVLO and ACOV, above SLEEP mode threshold, and current limit is above 30 mA.
D– 3 I
Analog
Negative line of the USB data line pair. D+/D– based USB host/charging port detection. The detection includes data contact detection (DCD), primary detection in bc1.2, and non-standard adapters.
STAT STAT 4 O Open drain charge status output to indicate various charger operation. Connect to the pull up rail via 10-kΩ resistor. LOW indicates charge in progress. HIGH indicates charge complete or charge disabled. When any fault condition occurs, STAT pin in the charge blinks at 1 Hz.
SCL SCL 5 I I2C Interface clock. Connect SCL to the logic rail through a 10-kΩ resistor.
SDA SDA 6 I/O I2C Interface data. Connect SDA to the logic rail through a 10-kΩ resistor.
INT INT 7 O Open-drain Interrupt Output. Connect the INT to a logic rail via 10kΩ resistor. The INT pin sends active low, 256-µs pulse to host to report charger device status and fault.
OTG OTG 8 I
Digital
USB current limit selection pin during buck mode, and active high enable pin during boost mode.
For BQ24296, when in buck mode with USB host (PSEL = High), when OTG = High, IIN limit = 500 mA and when OTG = Low, IIN limit = 100 mA.
For BQ24297, when in buck mode with USB host, when OTG = High, IIN limit = 500 mA and when OTG = Low, IIN limit = 100 mA.
The boost mode is activated when the REG01[5] = 1 and OTG pin is High.
CE CE 9 I Active low Charge Enable pin. Battery charging is enabled when REG01[5:4] = 01 and CE pin = Low. CE pin must be pulled high or low.
ILIM ILIM 10 I ILIM pin sets the maximum input current limit by regulating the ILIM voltage at 1 V. A resistor is connected from ILIM pin to ground to set the maximum limit as IINMAX = (1V/RILIM) × KILIM. The actual input current limit is the lower one set by ILIM and by I2C REG00[2:0]. The minimum input current programmed on ILIM pin is 500 mA.
TS TS 11 I
Analog
Temperature qualification voltage input. Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends or Boost disable when TS pin is out of range. A 103AT-2 thermistor is recommended.
QON QON 12 I BATFET enable control in shipping mode. A logic low to high transition on this pin with minimum 2-ms high level turns on BATFET to exit shipping mode. It has internal 1-MΩ (Typ) pull down. For backward compatibility, when BATFET enable control function is not used, the pin can be no connect or tied to TS pin (10-kΩ NTC thermister only). (Refer to Section 9.3.1.2.2 for detail description).
BAT BAT 13,14 P Battery connection point to the positive pin of the battery pack. The internal BATFET is connected between BAT and SYS. Connect a 10 µF closely to the BAT pin.
SYS SYS 15,16 I System connection point. The internal BATFET is connected between BAT and SYS. When the battery falls below the minimum system voltage, switch-mode converter keeps SYS above the minimum system voltage.
PGND PGND 17,18 P Power ground connection for high-current power converter node. Internally, PGND is connected to the source of the n-channel LSFET. On PCB layout, connect directly to ground connection of input and output capacitors of the charger. A single point connection is recommended between power PGND and the analog GND near the IC PGND pin.
SW SW 19,20 O Switching node connecting to output inductor. Internally SW is connected to the source of the n-channel HSFET and the drain of the n-channel LSFET. Connect the 0.047-µF bootstrap capacitor from SW to BTST.
BTST BTST 21 P PWM high side driver positive supply. Internally, the BTST is connected to the cathode of the boost-strap diode. Connect the 0.047-µF bootstrap capacitor from SW to BTST.
REGN REGN 22 P PWM low side driver positive supply output. Internally, REGN is connected to the anode of the boost-strap diode. Connect a 4.7-µF (10-V rating) ceramic capacitor from REGN to analog GND. The capacitor should be placed close to the IC. REGN also serves as bias rail of TS pin.
PMID PMID 23 O Connected to the drain of the reverse blocking MOSFET and the drain of HSFET. Given the total input capacitance, connect a 1-µF capacitor on VBUS to PGND, and the recommended 8.2 µF or more on PMID to PGND.
Thermal Pad Thermal Pad P Exposed pad beneath the IC for heat dissipation. Always solder thermal pad to the board, and have vias on the thermal pad plane star-connecting to PGND and ground plane for high-current power converter.