SLUS893B March   2010  – June 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Battery Current Regulation
      3. 8.3.3  Precharge
      4. 8.3.4  Charge Termination, Recharge, and Safety Timer
      5. 8.3.5  Power Up
      6. 8.3.6  Enable and Disable Charging
      7. 8.3.7  Automatic Internal Soft-Start Charger Current
      8. 8.3.8  Converter Operation
      9. 8.3.9  Synchronous and Nonsynchronous Operation
      10. 8.3.10 Cycle-by-Cycle Charge Undercurrent
      11. 8.3.11 Input Overvoltage Protection (ACOV)
      12. 8.3.12 Input Undervoltage Lockout (UVLO)
      13. 8.3.13 Battery Overvoltage Protection
      14. 8.3.14 Cycle-by-Cycle Charge Overcurrent Protection
      15. 8.3.15 Thermal Shutdown Protection
      16. 8.3.16 Temperature Qualification
      17. 8.3.17 Timer Fault Recovery
      18. 8.3.18 PG Output
      19. 8.3.19 CE (Charge Enable)
      20. 8.3.20 Charge Status Outputs
      21. 8.3.21 Battery Detection
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Power MOSFET Selection
        5. 9.2.2.5 Input Filter Design
        6. 9.2.2.6 Inductor, Capacitor, and Sense Resistor Selection Guidelines
        7. 9.2.2.7 Maximum Output Capacitance
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings(1)(2)(3)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage VCC, SRP, SRN, CE, STAT, PG –0.3 33 V
PH –2 36
VFB –0.3 16
REGN, LODRV, TS –0.3 7
BTST, HIDRV with respect to GND –0.3 39
VREF, ISET –0.3 3.6
Maximum difference voltage SRP–SRN –0.5 0.5 V
Junction temperature, TJ –40 155 °C
Storage temperature, Tstg –55 155 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult the packaging section of the data book for thermal limitations and considerations of packages.
(3) Must have a series resistor between battery pack to VFB if battery pack voltage is expected to be greater than 16 V. Usually the resistor-divider top resistor takes care of this.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Voltage VCC, SRP, SRN, CE, STAT, PG –0.3 28 V
PH –2 30
VFB –0.3 14
REGN, LODRV, TS –0.3 6.5
BTST, HIDRV with respect to GND –0.3 34
ISET –0.3 3.3
VREF 3.3
Maximum difference voltage SRP–SRN –0.2 0.2 V
TJ Junction temperature 0 125 °C
Tstg Storage temperature –55 155 °C

7.4 Thermal Information

THERMAL METRIC(1) bq24620 UNIT
RVA [VQFN]
16 PINS
RθJA Junction-to-ambient thermal resistance 43.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 81 °C/W
RθJB Junction-to-board thermal resistance 16 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 15.77 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

5 V ≤ VVCC ≤ 28 V, 0°C < TJ< 125°C, typical values are at TA= 25°C, with respect to GND unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OPERATING CONDITIONS
VVCC_OP VCC input voltage operating range 5 28 V
QUIESCENT CURRENTS
IBAT Total battery discharge current (sum of currents into VCC, BTST, PH, SRP, SRN, VFB), VFB ≤ 2.1 V VVCC < VSRN, VVCC > VUVLO (SLEEP) 15 μA
IAC Adapter supply current (current into VCC pin) VVCC > VSRN, VVCC > VUVLO CE = LOW (IC quiescent current) 1 1.5 mA
VVCC > VSRN, VVCC >VVCCLOW, CE = HIGH, charge done 2 5
VVCC > VSRN, VVCC >VVCCLOW, CE = HIGH, Charging, Qg_total = 20 nC, VVCC = 20 V 12
CHARGE VOLTAGE REGULATION
VFB Feedback regulation voltage 1.8 V
Charge voltage regulation accuracy TJ = 0°C to 85°C –0.5% 0.5%
TJ = –40°C to 125°C –0.7% 0.7%
IVFB Input leakage current into VFB pin VFB = 1.8 V 100 nA
CURRENT REGULATION – FAST CHARGE
VISET ISET voltage range 0 2 V
VIREG_CHG SRP–SRN current-sense voltage range VIREG_CHG = VSRP – VSRN 0 100 mV
KISET Charger current-set factor; amps of charge current per volt on ISET pin) RSENSE = 10 mΩ 5 A/V
Charge current regulation accuracy VIREG_CHG = 40 mV –3% 3%
VIREG_CHG = 20 mV –4% 4%
VIREG_CHG = 5 mV –25% 25%
VIREG_CHG = 1.5 mV (VSRN > 3.1 V) –40% 40%
IISET Leakage current in to ISET Pin VISET = 2 V 100 nA
CURRENT REGULATION – PRECHARGE
Precharge current RSENSE = 10 mΩ, VFB < VLOWV 50 125 200 mA
CHARGE TERMINATION
Termination current range RSENSE = 10 mΩ ICHARGE/10 A
KTERM Termination current-set factor; amps of termination current per volt on ISET pin 0.5 A/V
Termination current accuracy VITERM = 10 mV –10% 10%
VITERM = 5 mV –25% 25%
VITERM = 1.5 mV –45% 45%
Deglitch time for termination (both edge) 100 ms
tQUAL Termination qualification time VBAT > VRECH and ICHARGE < ITERM 250 ms
IQUAL Termination qualification time Discharge current once termination is detected 2 mA
INPUT UNDERVOLTAGE LOCKOUT COMPARATOR (UVLO)
VUVLO AC undervoltage rising threshold Measure on VCC 3.65 3.85 4 V
VUVLO_HYS AC undervoltage hysteresis, falling 350 mV
VCC LOWV COMPARATOR
Falling threshold, disable charge Measure on VCC 4.1 V
Rising threshold, resume charge 4.35 4.5 V
SLEEP COMPARATOR (REVERSE DISCHARGING PROTECTION)
VSLEEP _FALL SLEEP falling threshold VVCC – VSRN to enter SLEEP 40 100 150 mV
VSLEEP_HYS SLEEP hysteresis 500 mV
SLEEP rising delay VCC falling below SRN, delay to pull up PG 1 µs
SLEEP falling delay VCC rising above SRN, delay to pull down PG 30 ms
SLEEP rising shutdown deglitch VCC falling below SRN, Delay to enter SLEEP mode 100 ms
SLEEP falling powerup deglitch VCC rising above SRN, Delay to come out of SLEEP mode 30 ms
BAT LOWV COMPARATOR
VLOWV LOWV rising threshold (precharge to fast charge) Measured on VFB pin 0.333 0.35 0.367 V
VLOWV_HYS LOWV hysteresis 100 mV
LOWV rising deglitch VFB falling below VLOWV 25 ms
LOWV falling deglitch VFB rising above VLOWV + VLOWV_HYS 25 ms
RECHARGE COMPARATOR
VRECHG Recharge threshold (with respect to VREG) Measured on VFB pin 110 125 140 mV
Recharge rising deglitch VFB decreasing below VRECHG 10 ms
Recharge falling deglitch VFB increasing above VRECHG 10 ms
BAT OVERVOLTAGE COMPARATOR
VOV_RISE Overvoltage rising threshold As percentage of VFB 108%
VOV_FALL Overvoltage falling threshold As percentage of VFB 105%
INPUT OVERVOLTAGE COMPARATOR (ACOV)
VACOV AC overvoltage rising threshold on VCC 31.04 32 32.96 V
VACOV_HYS AC overvoltage falling hysteresis 1000 mV
AC overvoltage rising deglitch Delay to changing the STAT pins 1 ms
AC overvoltage falling deglitch Delay to changing the STAT pins 1 ms
THERMAL SHUTDOWN COMPARATOR
TSHUT Thermal shutdown rising temperature Temperature increasing 145 °C
TSHUT_HYS Thermal shutdown hysteresis 15 °C
Thermal shutdown rising deglitch Temperature increasing 100 μs
Thermal shutdown falling deglitch Temperature decreasing 10 ms
THERMISTOR COMPARATOR
VLTF Cold temperature rising threshold Charger suspended below this temperature 72.5% 73.5% 74.5%
VLTF_HYS Cold temperature hysteresis 0.2% 0.4% 0.6%
VCOOL Cool temperature rising threshold Charger enabled, cuts back to ICHARGE/8 below this temperature 70.2% 70.7% 71.2%
VCOOL_HYS Cool temperature hysteresis 0.2% 0.6% 1.0%
VWARM Warm temperature rising threshold Charger cuts back to ICHARGE/8 above this temperature 47.5% 48% 48.5%
VWARM_HYS Warm temperature hysteresis 1.0% 1.2% 1.4%
VHTF Hot temperature rising threshold Charger suspended above this temperature before initiating charge 36.2% 37% 37.8%
VTCO Cutoff temperature rising threshold Charger suspended above this temperature during initiating charge 33.7% 34.4% 35.1%
Deglitch time for temperature out-of-range detection VTS > VLTF, or VTS < VTCO, or VTS < VHTF 400 ms
Deglitch time for temperature in-valid-range detection VTS < VLTF – VLTF_HYS or VTS >VTCO, or VTS > VHTF 20 ms
Deglitch time for current reduction to ICHARGE/8 due to warm or cool temperature VTS > VCOOL, or VTS < VWARM 25 ms
Deglitch time to charge at ICHARGE from ICHARGE/8 when resuming from warm or cool temperatures VTS < VCOOL - VCOOL_HYS, or VTS > VWARM - VWARM_HYS 25 ms
Charge current due to warm or cool temperatures VCOOL < VTS < VLTF, or VWARM < VTS < VHTF, or VWARM < VTS < VTCO ICHARGE/8
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)
VOC Charge overcurrent, falling threshold Current rising, in nonsynchronous mode, measure on V(SRP-SRN), VSRP < 2 V 45.5 mV
Current rising, as percentage of V(IREG_CHG), in synchronous mode, VSRP > 2.2 V 160%
Charge overcurrent, threshold floor Minimum OCP threshold in synchronous mode, measure on V(SRP-SRN), VSRP > 2.2 V 50 mV
Charge overcurrent, threshold ceiling Maximum OCP threshold in synchronous mode, measure on V(SRP-SRN), VSRP > 2.2 V 180 mV
CHARGE UNDERCURRENT COMPARATOR (CYCLE-BY-CYCLE)
VISYNSET Charge undercurrent, falling threshold Switch from STNCH to NON-SYNCH, VSSP > 2.2 V 1 5 9 mV
BATTERY SHORTED COMPARATOR (BATSHORT)
VBATSHT BAT short falling threshold, forced non-syn mode VSRP falling 2 V
VBATSHT_HYS BAT short rising hysteresis 200 mV
VBATSHT_DEG Deglitch on both edges 1 μs
LOW CHARGE CURRENT COMPARATOR
VLC Average low charge current, falling threshold Measure on V(SRP-SRN), forced into nonsynchronous mode 1.25 mV
VLC_HYS Low charge current, rising hysteresis 1.25 mV
VLC_DEG Deglitch on both edges 1 μs
VREF REGULATOR
VVREF_REG VREF regulator voltage VVCC > VUVLO (0 – 35 mA Load) 3.267 3.3 3.333 V
IVREF_LIM VREF current limit VVREF = 0 V, VVCC > VUVLO 35 mA
REGN REGULATOR
VREGN_REG REGN regulator voltage VVCC > 10 V, CE = HIGH (0 – 40 mA Load) 5.7 6 6.3 V
IREGN_LIM REGN current limit VREGN = 0 V, VVCC > VUVLO 40 mA
SAFETY TIMER
TPRECHG Precharge safety timer range(1) Precharge time before fault occurs 1440 1800 2160 s
TCHARGE Internal fast-charge safety timer(1) 4.25 5 5.75 Hr
BATTERY DETECTION
tWAKE Wake timer Max time charge is enabled 500 ms
IWAKE Wake current RSENSE = 10 mΩ 50 125 200 mA
tDISCHARGE Discharge timer Max time discharge current is applied 1 s
IDISCHARGE Discharge current 8 mA
IFAULT Fault current after a time-out fault 2 mA
VWAKE Wake threshold (relative to VREG) Voltage on VFB to detect battery absent during wake 125 mV
VDISCH Discharge threshold Voltage on VFB to detect battery absent during discharge 0.35 V
PWM HIGH-SIDE DRIVER (HIDRV)
RDS_HI_ON High-side driver (HSD) turnon resistance VBTST – VPH = 5.5 V 3.3 6 Ω
RDS_HI_OFF High-side driver turnoff resistance VBTST – VPH = 5.5 V 1 1.3 Ω
VBTST_REFRESH Bootstrap refresh comparator threshold voltage VBTST – VPH when low-side refresh pulse is requested 4 4.2 V
PWM LOW-SIDE DRIVER (LODRV)
RDS_LO_ON Low-side driver (LSD) turnon resistance 4.1 7 Ω
RDS_LO_OFF Low-side driver turnoff resistance 1 1.4 Ω
PWM DRIVERS TIMING
Driver dead time Dead time when switching between LSD and HSD, no load at LSD and HSD 30 ns
PWM OSCILLATOR
VRAMP_HEIGHT PWM ramp height As percentage of VCC 7%
PWM switching frequency(1) 255 300 345 kHz
INTERNAL SOFT START (Eight Steps to Regulation Current ICHARGE)
Soft-start steps 8 step
Soft-start step time 1.6 ms
CHARGER SECTION POWER-UP SEQUENCING
Charge-enable delay after power up Delay from when CE = 1 to when the charger is allowed to turn on 1.5 s
LOGIC I/O PIN CHARACTERISTICS
VIN_LO CE input-low threshold voltage 0.8 V
VIN_HI CE input-high threshold voltage 2.1 V
VBIAS_CE CE input bias current V = 3.3 V (CE has internal 1-MΩ pulldown resistor) 6 μA
VOUT_LO STAT, PG output-low saturation voltage Sink current = 5 mA 0.5 V
IOUT_HI Leakage current V = 32 V 1.2 µA
(1) Verified by design.

7.6 Typical Characteristics

Table 1. Table Of Graphs

FIGURE
REF, REGN, and PG Power Up (CE = 1) Figure 1
Charge Enable Figure 2
Current Soft Start (CE = 1) Figure 3
Charge Disable Figure 4
Continuous Conduction Mode Switching Waveforms Figure 5
Cycle-by-Cycle Synchronous to Nonsynchronous Figure 6
Battery Insertion Figure 7
Battery-to-Ground Short Protection Figure 8
Efficiency vs Output Current Figure 9
bq24620 ref_rgn_lus894.gifFigure 1. REF, REGN, and PG Power Up (CE = 1)
bq24620 cur_sfst_lus894.gifFigure 3. Current Soft Start (CE = 1)
bq24620 con_cond_lus894.gifFigure 5. Continuous Conduction Mode Switching Waveform
bq24620 ins_batt_lus894.gifFigure 7. Battery Insertion
bq24620 eff_comb_lus894.gifFigure 9. Efficiency vs Output Current
bq24620 chg_enab_lus894.gifFigure 2. Charge Enable
bq24620 chrg_dis_lus894.gifFigure 4. Charge Disable
bq24620 cycle_sync_lus894.gifFigure 6. Cycle-by-Cycle Synchronous to Nonsynchronous
bq24620 short_prot_lus894.gifFigure 8. Battery-to-GND Short Protection