SLUSAL0C September   2011  – January 2020 BQ24725A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 SMBus Interface
    4. 8.4 Device Functional Modes
      1. 8.4.1  Adapter Detect and ACOK Output
      2. 8.4.2  Adapter Over Voltage (ACOVP)
      3. 8.4.3  System Power Selection
      4. 8.4.4  Battery LEARN Cycle
      5. 8.4.5  Enable and Disable Charging
      6. 8.4.6  Automatic Internal Soft-Start Charger Current
      7. 8.4.7  High Accuracy Current Sense Amplifier
      8. 8.4.8  Charge Timeout
      9. 8.4.9  Converter Operation
      10. 8.4.10 Continuous Conduction Mode (CCM)
      11. 8.4.11 Discontinuous Conduction Mode (DCM)
      12. 8.4.12 Input Over Current Protection (ACOC)
      13. 8.4.13 Charge Over Current Protection (CHGOCP)
      14. 8.4.14 Battery Over Voltage Protection (BATOVP)
      15. 8.4.15 Battery Shorted to Ground (BATLOWV)
      16. 8.4.16 Thermal Shutdown Protection (TSHUT)
      17. 8.4.17 EMI Switching Frequency Adjust
      18. 8.4.18 Inductor Short, MOSFET Short Protection
    5. 8.5 Register Maps
      1. 8.5.1 Battery-Charger Commands
      2. 8.5.2 Setting Charger Options
        1. Table 3. Charge Options Register (0x12H)
      3. 8.5.3 Setting the Charge Current
        1. Table 4. Charge Current Register (0x14H), Using 10mΩ Sense Resistor
      4. 8.5.4 Setting the Charge Voltage
        1. Table 5. Charge Voltage Register (0x15H)
      5. 8.5.5 Setting Input Current
        1. Table 6. Input Current Register (0x3FH), Using 10mΩ Sense Resistor
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Typical System with Two NMOS Selector
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Negative Output Voltage Protection
          2. 9.2.1.2.2 Reverse Input Voltage Protection
          3. 9.2.1.2.3 Reduce Battery Quiescent Current
          4. 9.2.1.2.4 Inductor Selection
          5. 9.2.1.2.5 Input Capacitor
          6. 9.2.1.2.6 Output Capacitor
          7. 9.2.1.2.7 Power MOSFETs Selection
          8. 9.2.1.2.8 Input Filter Design
          9. 9.2.1.2.9 BQ24725A Design Guideline
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Simplified System without Power Path
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Charge Over Current Protection (CHGOCP)

The BQ24725A has a cycle-by-cycle peak over current protection. It monitors the voltage across SRP and SRN, and prevents the current from exceeding of the threshold based on the DAC charge current set point. The high-side gate drive turns off for the rest of the cycle when the over current is detected, and resumes when the next cycle starts.

The charge OCP threshold is automatically set to 6A, 9A, and 12A on a 10mΩ current sensing resistor based on charge current register value. This prevents the threshold to be too high which is not safe or too low which can be triggered in normal operation. Proper inductance should be selected to prevent OCP triggered in normal operation due to high inductor current ripple.