SLUSC03C August   2014  – December 2016

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Only
      2. 8.3.2  Adapter Detect and ACOK Output
        1. 8.3.2.1 Adapter Overvoltage (ACOVP)
      3. 8.3.3  System Power Selection
      4. 8.3.4  System Power Up
        1. 8.3.4.1 Dynamic Power Management (IDPM) and Supplement Mode
        2. 8.3.4.2 Minimum System Voltage Regulation and LDO Mode
      5. 8.3.5  Current and Power Monitor
        1. 8.3.5.1 High Accuracy Current Sense Amplifier (IADP and IBAT)
        2. 8.3.5.2 High Accuracey Power Sense Amplifier (PMON)
      6. 8.3.6  Processor Hot Indication for CPU Throttling
      7. 8.3.7  Converter Operation
        1. 8.3.7.1 Continuous Conduction Mode (CCM)
        2. 8.3.7.2 Discontinuous Conduction Mode (DCM)
        3. 8.3.7.3 PFM Mode
        4. 8.3.7.4 Switching Frequency Adjust
      8. 8.3.8  Learn Mode
      9. 8.3.9  Charger Timeout
      10. 8.3.10 Device Protection Features
        1. 8.3.10.1 Input Overcurrent Protection (ACOC)
        2. 8.3.10.2 Converter Overcurrent Protection
        3. 8.3.10.3 Battery Overvoltage Protection (BATOVP)
        4. 8.3.10.4 System Overvoltage Protection (SYSOVP)
        5. 8.3.10.5 Thermal Shutdown Protection (TSHUT)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Battery Charging
      2. 8.4.2 System Voltage Regulation with Narrow VDC Architecture
    5. 8.5 Programming
      1. 8.5.1 SMBus Interface
        1. 8.5.1.1 SMBus Write-Word and Read-Word Protocols
        2. 8.5.1.2 Timing Diagrams
      2. 8.5.2 I2C Serial Interface
        1. 8.5.2.1 Data Validity
        2. 8.5.2.2 START and STOP Conditions
        3. 8.5.2.3 Byte Format
        4. 8.5.2.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 8.5.2.5 Slave Address and Data Direction Bit
        6. 8.5.2.6 Single Read and Write
        7. 8.5.2.7 Multi-Read and Multi-Write
    6. 8.6 Register Maps
      1. 8.6.1 ChargeOption0 Register
      2. 8.6.2 ChargeOption1 Register
      3. 8.6.3 ChargeOption2 Register
      4. 8.6.4 ProchotOption0 Register
      5. 8.6.5 ProchotOption1 Register
      6. 8.6.6 Setting the Charge Current
      7. 8.6.7 Setting the Maximum Charge Voltage
      8. 8.6.8 Setting the Minimum Charge Voltage
      9. 8.6.9 Setting Input Current
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application, bq24770
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Reverse Input Voltage Protection
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Input Capacitor
        4. 9.2.2.4 Output Capacitor
        5. 9.2.2.5 Power MOSFETs Selection
        6. 9.2.2.6 Input Filter Design
      3. 9.2.3 Application Curves
      4. 9.2.4 Typical Application, bq24773
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Layout Consideration of Current Path
      2. 11.2.2 Layout Consideration of Short Circuit Protection
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
Voltage range SRN, SRP, ACN, ACP, CMSRC, VCC, BAT, BATDRV –0.3 30 V
PHASE –2.0 30 V
BTST, HIDRV, ACDRV –0.3 36 V
LODRV (2% duty cycle) –4.0 7 V
HIDRV (2% duty cycle) –4.0 36 V
PHASE (2% duty cycle) –4.0 30 V
ACDET, SDA, SCL, LODRV, REGN, IADP, IBAT, PMON, BATPRES, ACOK, CELL, CMPIN, CMPOUT, ILIM –0.3 7 V
PROCHOT –0.3 5.5 V
Differential voltage BTST-PHASE, HIDRV-PHASE –0.3 7 V
SRP–SRN, ACP–ACN –0.5 0.5 V
Junction temperature range, TJ –40 155 °C
Storage temperature range, Tstg –55 155 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the data book for thermal limitations and considerations of packages.

ESD Ratings

MIN MAX UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 0 2 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 0 500 V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage range ACN, ACP, CMSRC, VCC 0 24 V
BATDRV, BAT, SRN, SRP 0 19.2 V
PHASE –2 24 V
BTST, HIDRV, ACDRV 0 30 V
ACDET, SDA, SCL, LODRV, REGN, IADP, IBAT, PMON, BATPRES, ACOK, CELL, CMPIN, CMPOUT, ILIM 0 6.5 V
PROCHOT –0.3 5.3 V
Differential voltage BTST-PHASE, HIDRV-PHASE 0 6.5 V
SRP–SRN, ACP–ACN –0.35 0.35 V
Junction temperature range, TJ –20 125 °C
Operating free-air temperature range, TA –40 85 °C

Thermal Information

THERMAL METRIC(1) bq2477x UNIT
RUY (WQFN)
28 PINS
RθJA Junction-to-ambient thermal resistance 33.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 29.7 °C/W
RθJB Junction-to-board thermal resistance 6.5 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 6.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.3 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

4.5V ≤ V(VCC) ≤ 24V, –20°C ≤ TJ ≤ 125°C, typical values are at TA = 25°C, with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
OPERATING CONDITIONS
V(IN_OP) Input voltage operating range 4.5 24 V
MINIMUM SYSTEM VOLTAGE REGULATION (0x3E REGISTER)
V(SYSMIN_RNG) System voltage regulation range 1.024 19.2 V
V(MINSYS_REG_ACC) Minimum system voltage regulation accuracy MinsystemVoltage()=0x2400H 9.216 V
–2% 2%
MinsystemVoltage()=0x1800H 6.144 V
–3% 3%
MinsystemVoltage()=0x0E00H 3.584 V
–3% 3%
MAXIMUM SYSTEM VOLTAGE REGULATION (0x15 REGISTER, CHARGE DISABLE)
V(SYSMAX_RNG) System voltage regulation range 1.024 19.2 V
V(MAXSYS_REG_ACC) Maximum system voltage regulation accuracy MaxChargVoltage() = 0x34C0H 13.504 V
–2% 2%
MaxChargVoltage() = 0x2330H 9.008 V
–3% 3%
MaxChargVoltage() = 0x1130H 4.4 V
–3% 3%
CHARGE VOLTAGE REGULATION (0x15 REGISTER, CHARGE ENABLE)
V(BAT_RGN) Battery voltage range 1.024 19.2 V
V(BAT_REG_ACC) Battery voltage regulation accuranc (0°C - 85°C) ChargeVoltage() = 0x41A0H 16.8 V
–0.5% 0.5%
ChargeVoltage() = 0x3130H 12.592 V
–0.5% 0.5%
ChargeVoltage() = 0x20D0H 8.4 V
–0.6% 0.6%
ChargeVoltage() = 0x1070H 4.208 V
–1% 1%
CHARGE CURRENT REGULATION
V(IREG_CHG_RNG) Charge current regulation differential voltage range V(IREG_CHG) = V(SRP) – V(SRN) 0 81.28 mV
I(CHRG_REG_ACC) Charge current regulation accuracy 10 Ω current sensing resistor, VBAT > V(SYSMIN) (0°C - 85°C) ChargeCurrent() = 0x1000H 4096 mA
–2% 2%
ChargeCurrent() = 0x0800H 2048 mA
–4% 3%
ChargeCurrent() = 0x0400H 1024 mA
–6% 5%
ChargeCurrent() = 0x0200H 512 mA
–12% 10%
I(CLAMP) Pre-charge current clamp (2s-4s) CELL = Float or High, BAT below 0x3E(), in LDO mode 384 mA
Pre-charge current clamp (1s only) CELL = LOW, BAT below BATLOWV threshold 384 mA
Fast charge current clamp (1s only) CELL = LOW, BAT above BATLOWV threshold, but below 0x3E() 2 A
PRECHARGE CURRENT REGULATION IN LDO MODE
I(PRECHRG_REG_ACC) Precharge current regulation accuracy, VBAT > V(SYSMIN) (0°C - 85°C) ChargeCurrent() = 0x0180H 384 mA
–15% 15%
ChargeCurrent() = 0x0100H 256 mA
–20% 20%
ChargeCurrent() = 0x00C0H 192 mA
–25% 25%
ChargeCurrent() = 0x0080H 128 mA
–30% 30%
I(LEAK_SRP_SRN) SRP, SRN leakage current mismatch –21 21 µA
LDO MODE TO FAST CHARGE COMPARATOR
V(BAT_SYSMIN) LDO mode to fast charge mode threshold, VBAT rising as percentage of 0x3E() 94% 96% 99%
V(BAT_SYSMIN_HYST) Fast charge mode to LDO mode threshold hysteresis as percentage of 0x3E() 4%
INPUT CURRENT REGULATION
V(IREG_DPM_RNG) Input current regulation differential voltage range V(IREG_DPM) = V(ACP) – V(ACN) 0 81.28 mV
I(DPM_REG_ACC) Input current regulation accuracy ChargeCurrent() = 0x1000H 4096 mA
–2 2%
ChargeCurrent() = 0x0800H 2048 mA
–3 3%
ChargeCurrent() = 0x0400H 1024 mA
–5 5%
ChargeCurrent() = 0x0200H 512 mA
–10 10%
I(LEAK_ACP_ ACN) ACP, ACN leakage current mismatch ––11 20 µA
INPUT CURRENT SENSE AMPLIFIER
V(ACP/N_OP) Input common mode range Voltage on ACP/ACN 4.5 24 V
V(IADP_CLAMP) IADP output clamp voltage 3.1 3.2 3.3 V
I(IADP) IADP output current 1 mA
A(IADP) Input current sense gain V(IADP)/V(ACP-ACN), ChargeOption0[4]=0, (770/773) 40 V/V
V(IADP)/V(ACP-ACN), ChargeOption0[4]=1, (770/773) 80
V(IADP_ACC) Input current monitor accuracy V(ACP-ACN) = 40.96 mV –2% 2%
V(ACP-ACN) = 20.48 mV –3% 4%
V(ACP-ACN) = 10.24 mV –6% 7%
V(ACP-ACN) = 5.12 mV –10% 18%
C(IADP_MAX) Maximum output load capacitance 100 pF
CHARGE CURRENT AND DISCHARGE CURRENT SENSE AMPLIFIER
V(SRP/N_OP) Battery common mode range Voltage on SRP/SRN 2.8 18 V
V(IBAT_CLAMP) IBAT output clamp voltage 3.1 3.2 3.3 V
I(IBAT) IBAT output current 1 mA
A(IBAT_DCHG) Discharge current sensing gain on IBAT pin V(IBAT)/V(SRN-SRP), ChargeOption0[3]=0 8 V/V
V(IBAT)/V(SRN-SRP), ChargeOption0[3]=1 16
I(IBAT_DCHG_ACC) Discharge current monitor accuracy on IBAT pin V(SRN-SRP) = 40.96 mV –2% 2%
V(SRN-SRP) = 20.48 mV –3% 3%
V(SRN-SRP) = 10.24 mV –5% 5%
V(SRN-SRP) = 5.12 mV –10% 10%
A(IBAT_CHG) Charge current sensing gain on IBAT pin V(IBAT)/V(SRN-SRP) 20 V/V
I(IBAT_CHG_ACC) Charge current monitor accuracy on IBAT pin (0°C - 85°C) V(SRN-SRP) = 40.96 mV –2% 2%
V(SRN-SRP) = 20.48 mV –3% 4%
V(SRN-SRP) = 10.24 mV –5% 7%
V(SRN-SRP) = 5.12 mV –10% 15%
C(IBAT_MAX) Maximum output load capacitance 100 pF
SYSTEM POWER SENSE AMPLIFIER
V(ACP/N_OP) Input common mode range Voltage on ACP/ACN 4.5 24 V
V(SRP/N_OP) Battery common mode range Voltage on SRP/SRN 2.8 18 V
V(PMON) Power buffer output voltage 3.3 V
V(PMON_CLAMP) Power buffer clamp voltage 3 3.2 3.3 V
I(PMON) Power buffer output current 105 µA
A(PMON) System power sense gain,
V(PMON)/(V(ACP-ACN) x V(ACN) + V(SRN-SRP) x V(SRP))
ChargeOption1[9]=0 0.25 µA/V
ChargeOption1[9]=1 1 µA/V
V(PMON_ACC) PMON output accuracy Input 19.5 V, 65W, 1 µA/W –5% 5%
Battery 11 V, 44W, 1 µA/W –6% 6%
REGN REGULATOR
V(REGN_REG) REGN Regulator voltage (0 mA - 40 mA) V(VCC) > 10 V, V(ACDET) > 0.6 V (0 - 50 mA load) 5 5.5 6 V
V(DROPOUT) REGN Voltage in drop out mode V(VCC) = 5 V, I(LOAD) = 20 mA 4.4 4.6 4.7 V
I(REGN_LIM) REGN Current Limit when converter is disabled or in T(SHUT) (no charging) V(REGN) = 4 V, V(ACP) > V(UVLO), 0.6 V < ACDET < 2.4 V 6.5 mA
REGN Current Limit when converter is enabled (charging) V(REGN) = 4 V, V(ACP) > V(UVLO) 50 65 mA
C(REGN) REGN Output Capacitor Required for Stability ILOAD = 100 µA to 50 mA 1 µF
QUIESCENT CURRENT
I(BAT_BATFET_OFF) Standby mode. System powered by battery. BATFET off (0°C - 85°C).
I(SRN) + I(SRN) + I(SRP)+ I(PHASE) + I(BTST) + I(ACP) + I(ACN) + IBAT + I(CMSRC) + I(VCC)
VBAT = 16.8 V
V(VCC) < V(UVLO), ACDET < 0.6 V
20 27 µA
I(BAT_BATFET_ON) Standby mode. System powered by battery. BATFET on (0°C - 85°C).
I(SRN) + I(SRP) + I(PHASE) + I(BTST) + I(ACP) + I(ACN) + IBAT + I(CMSRC) + I(VCC)
VBAT = 16.8 V
V(VCC) > V(UVLO), ACDET < 0.6 V, 0x12[15]=1,
low power mode enabled
22 30 µA
VBAT = 16.8 V
V(VCC) > V(UVLO), ACDET < 0.6 V, 0x12[15]=0, 0x3B[2]=0,
IBAT Enabled, REGN = 0
114 150 µA
VBAT = 16.8 V
V(VCC) >V(UVLO), ACDET < 0.6 V, 0x12[15]=0, 0x3B[2]=0,
IBAT enabled, REGN = 5.5V
650 775 µA
I(STANDBY) Adapter standby quiescent current,
I(VCC) + I(ACP) + I(ACN) + I(CMSRC) + I(SRP) + I(SRN) + I(PHASE) + I(BTST)
ACN = ACP = CMSRC = VCC = 20 V,
VBAT = 12.6V, V(ACDET) > 2.4V,
CELL pul up, TJ = 0°C - 85°C
650 815 µA
I(AC_SWLIGHT) Adapter current,
I(VCC) + I(ACP) + I(ACN) + I(CMSRC) + I(SRP) + I(SRN) + I(PHASE) + I(BTST)
I(STANDBY) plus supply current in PFM,
200mW output;
Reg0x12[10]=0;MOSFET Qg=4 nF;
1.5 2 mA
I(STANDBY) plus supply current in PFM,
200mW output,
Reg0x12[10]=1; limit 40kHz, MOSFET Qg=4 nF;
3 5 mA
I(AC_SW) Adapter current,
I(VCC) + I(ACP) + I(ACN) + I(CMSRC) + I(SRP) + I(SRN) + I(PHASE) + I(BTST)
V(ULVO) < V(VCC) < V(ACOVP), VBAT = 16.8 V,
V(ACDET) >2.4 V,
charge enabled, 800k Hz switching,
MOSFET Qg=4 nF
8 mA
ACOK COMPARATOR
V(ACOK_RISE) ACOK rising threshold V(VCC) > V(UVLO), ACDET rising 2.37 2.4 2.43 V
V(ACOK_FALL) ACOK falling threshold V(VCC) > V(UVLO) 2.32 2.35 2.38 V
V(ACOK_RISE_DEG) ACOK rising deglitch to turn on ACFET V(VCC) > V(UVLO) 2 ms
V(ACOK_FALL_DEG) ACOK falling deglitch to turn off ACFET V(VCC) > V(UVLO) 2 µs
V(WAKEUP_RISE) WAKEUP detect rising threshold ACDET rising 0.56 0.8 V
V(WAKEUP_FALL) WAKEUP detect falling threshold 0.3 0.5 V
UNDER VOLTAGE LOCKOUT COMPARATOR (UVLO)
V(UVLOZ) VCC undervoltage rising threshold VCC rising 2.5 2.7 2.9 V
V(UVLO) VCC undervoltage falling threshold VCC falling 2.3 2.5 2.7 V
SLEEP COMPARATOR (VCC_BAT)
V(VCC-BAT_FALL) VCC-BAT falling threshold Input connected to VCC via schottky diode –25 55 135 mV
V(VCC-BAT_RISE) VCC-BAT rising threshold 174 275 370 mV
tVCC_BAT_RDEG VCC to BAT rising deglitch VCC rising above SRN deglitch to turn on ACDRV 4 ms
tVCC_SRN_FDEG VCC to BATfalling deglitch VCC falls below SRN deglitch to turn off ACDRV 100 µs
INPUT OVERVOLTAGE COMPARATOR (ACOVP)
V(ACOV_RISE) VCC overvoltage rising threshold VCC rising 24 26 28 V
V(ACOV_FALL) VCC overvoltage falling threshold VCC falling 22 24.5 27.5 V
V(ACOV_RISE_DEG) VCC overvoltage rising deglitch VCC rising to turn off ACDRV 100 µs
V(ACOV_FALL_DEG) VCC overvoltage falling deglitch VCC falling falling to turn on ACDRV 3 ms
INPUT OVERCURRENT COMPARATOR (ACOC)
V(ACOC) ACP to ACN rising threshold,
respect to inputcurrent(), peak
Voltage across input sense resistor rising, Reg0x12[7]=1 270% 300% 330%
V(ACOC_FLOOR) Measure between ACP and ACN Set IDPM to min 44 50 55 mV
V(ACOC_CEILING) Measure between ACP and ACN Set IDPM to max 174 180 185 mV
tRELAX Falling deglitch time Relax Time, No Latchoff 300 ms
SYSTEM OVERVOLTAGE COMPARATOR (SYS_OVP)
V(SYSOVP_RISE) System Overvoltage rising threshold to turn off ACFET CELL = Low 4.9 5 5.2 V
CELL = Float 11.9 12 12.3 V
CELL = High 18.4 18.5 19 V
V(SYSOVP_FALL) System Overvoltage falling threshold CELL = Low 4.6 4.7 4.9 V
CELL = Float 10.9 11.1 11.3 V
CELL = High 17.4 17.7 17.9 V
IOVP Discharge current when the OVP stop switching was triggered On SRP and SRN 19 mA
tSYSOVP Deglitch time to latch off ACFET 25 µs
BAT OVERVOLTAGE COMPARATOR (BAT_OVP)
V(OVP_RISE) Overvoltage rising threshold as percentage of V(BAT_REG) BAT rising 101% 102% 103%
V(OVP_FALL) Overvoltage falling threshold as percentage of V(BAT_REG) BAT falling 100% 101% 102%
IOVP Discharge current during OVP On SRP and SRN 19 mA
tOVP_RISE Overvoltage rising deglitch to turn off BATDRV to disable charge 20 ms
CONVERTER CYCLE-BY-CYCLE COMPARATOR (ILIM_HI)
V(OCP_limit) Converter over current limit (PH-GND) Reg0x12 [6]=1 249 290 333 mV
Reg0x12 [6]=0 142 170 202 mV
V(OCP_limit_SYSSHORT) System Short or SRN < 2.5 V Reg0x12 [6]=1 41 66 87 mV
Reg0x12 [6]=0 7 31 53 mV
CONVERTER CYCLE-BY-CYCLE UNDER-CURRENT COMPARATOR (UCP)
V(UCP_FALL) Charge Undercurrent falling threshold PH voltage when LSFET is on –2.8 0.4 mV
BATTERY LOWV COMPARATOR
V(BATLV_FALL) BATLOWV falling threshold CELL = Low 2.64 2.85 3.06 V
CELL = Float or High 5.71 5.92 6.12 V
V(BATLV_RHYST) BATLOWV rising threshold CELL = Low 2.89 3.10 3.31 V
CELL = Float or High 5.96 6.17 6.37 V
LIGHT LOAD COMPARATOR (LIGHT_LOAD)
VLL(FALL) Light load falling threshold detected on ACP-ACN 0 0.5 1.1 mV
VLL(RISE) Light load rising threshold detected on ACP-ACN 0.7 1.4 2.1 mV
THERMAL SHUTDOWN COMPARATOR
T(SHUT) Thermal shutdown rising temperature Temperature increasing 155 °C
T(SHUT_HYS) Thermal shutdown hysteresis, falling 20 °C
tSHUT_RDEG Thermal shutdown rising deglitch 100 µs
tSHUT_FHYS Thermal shutdown falling deglitch 10 ms
VSYS PROCHOT COMPARATOR
V(SYS_PRO) V(SYS) threshold falling threshold Reg0x3C [7:6]=00 5.75 V
Reg0x3C [7:6]=01 5.9 6 6.15 V
Reg0x3C [7:6]=10 6.25 V
Reg0x3C [7:6]=11 6.5 V
tSYS_PRO_RISE_DEG V(SYS) Rising Deglitch for throttling 20 µs
ICRIT PROCHOT COMPARATOR
V(ICRIT_PRO) IADP rising threshold for throttling above IDPM Reg0x3C [15:11]=01001 145% 150% 155%
INOM PROCHOT COMPARATOR
V(INOM_PRO) INOM rising threshold as percentage of IDPM 106% 110% 114%
IDCHG PROCHOT COMPARATOR
V(IDCHG_PRO) IDCHG threshold for throttling for IDSCHG of 6 A Reg0x3D [15:10]=001100 6144 mA
98% 104%
INDEPENDENT COMPARATOR
V(INDEP_CMP) Independent comparator threshold Reg0x3B [7]=1, CMPIN rising 1.17 1.2 1.23 V
Reg0x3B [7]=0, CMPIN rising 2.27 2.3 2.33 V
V(INDEP_CMP_HYS) Independent comparator hysteresis Reg0x3B [6]=0, CMPIN falling 100 mV
PWM OSCILLATOR
FSW PWM Switching frequency Reg0x12 [9:8]=00 510 600 690 kHz
Reg0x12 [9:8]=01 680 800 920
Reg0x12 [9:8]=10 850 1000 1150
Reg0x12 [9:8]=11 1020 1200 1380
BATFET GATE DRIVER (BATDRV)
V(BATDRV_ON) Gate Drive Voltage on BATFET V(SRN) - V(BATDRV) when BAT = 16 V 8.5 9.5 10.5 V
R(BATDRV_ON) Measured by sourcing 10 µA current to BATDRV 3 3.5 4
R(BATDRV_OFF) Measured by sinking 100 µA current from BATDRV 1.5 2 2.5
ACFET GATE DRIVER (ACDRV)
I(ACFET) ACDRV charge pump current limit V(ACDRV) – V(CMSRC)= 5 V 40 60 µA
V(ACDRV_ON) Gate drive voltage on ACFET V(ACDRV) – V(CMSRC)when V(VCC) > V(UVLO) 5.5 6.2 V
R(ACDRV_OFF) ACDRV turn-off resistance I = 30μA 5 6.2 7.4
R(ACDRV_LOAD) Minimum load between gate and source 500
PWM HIGH SIDE DRIVER (HIDRV)
RDS(HI_ON) High side driver(HSD) turn-on resistance V(BTST) – V(PH) = 5 V 4 Ω
RDS(HI_OFF) High side driver turn-off resistance V(BTST) – V(PH) = 5 V 0.65 1.3 Ω
V(BTST_REFRESH) Bootstrap refresh comparator falling threshold voltage V(BTST) – V(PH) when low side refresh pulse is requested 3.5 3.8 4.1 V
PWM LOW SIDE DRIVER (LODRV)
RDS(LO_ON) Low side driver (LSD) turn-on resistance V(BTST) – V(PH) = .55 V 5.5 Ω
RDS(LO_OFF) Low side driver turn-off resistance V(BTST) – V(PH) = 5.5 V 1 1.45 Ω
INTERNAL SOFT START
I(CHG_DAC) Soft start step size 64 mA
Soft start step time 30 µs
INTEGRATED BTST DIODE
VF Forward bias voltage IF = 20 mA at 25°C 0.8 V
VR Reverse breakdown voltage IR = 2 µA at 25°C 20 V
PWM DRIVERS TIMING
tDEADTIME_RISE Driver dead time from low side to high side 20 ns
tDEADTIME_FALL Driver dead time from high side to low side 20 ns
LOGIC INPUT (SDA, SCL)
V(IN_ LO) Input low threshold I2C (bq24773) 0.4 V
SMBus (bq24770) 0.8 V
V(IN_ HI) Input high threshold I2C (bq24773) 1.3 V
SMBus (bq24770) 2.1 V
LOGIC OUTPUT OPEN DRAIN (ACOK, SDA,CMPOUT)
V(OUT_ LO) Output saturation voltage 5 mA drain current 0.4 V
V(OUT_ LEAK) Leakage current (ACOK, SDA, SCL) V = 7 V –1 1 µA
LOGIC OUTPUT OPEN DRAIN (PROCHOT)
V(OUT_ LO) Output saturation voltage 50 Ω pull up to 1.05 V/ 5mA load 300 mV
V(OUT_ LEAK) Leakage current V = 5.5 V –1 1 µA
ANALOG INPUT (CELL)
V(CELL_HIGH) 3S/4S REGN = 5.4 V 1.9 V
V(CELL_FLOAT) 2S REGN = 5.4 V 1.2 1.8 V
V(CELL_LOW) 1S REGN = 5.4 V 1.1 V
R(CELL_UP) Internal resistor between CELL and REGN 405
R(CELL_DN) Internal resistor between CELL and GND 141
ANALOG INPUT (/BATPRES)
V(BATPRES_RISE) BATPRES pin rising threshold BATPRES rising 2.1 2.2 2.3 V
V(BATPRES_FALL) BATPRES pin falling threshold BATPRES falling 2 2.05 2.1 V

Timing Requirements

MIN TYP MAX UNIT
SMBus TIMING CHARACTERISTICS
tr SCLK/SDATA rise time 1 µs
tf SCLK/SDATA fall time 300 ns
tW(H) SCLK pulse width high 4 50 µs
tW(L) SCLK Pulse Width Low 4.7 µs
tSU(STA) Setup time for START condition 4.7 µs
tH(STA) START condition hold time after which first clock pulse is generated 4 µs
tSU(DAT) Data setup time 250 µs
tH(DTA) Data hold time 300 µs
tSU(STOP) Setup time for STOP condition 4 µs
t(BUF) Bus free time between START and STOP condition 4.7 µs
FS(CL) Clock Frequency 10 100 KHz
HOST COMMUNICATION FAILURE
ttimeout SMBus bus release timeout(1) 25 35 ms
tBOOT Deglitch for watchdog reset signal 10 ms
tWDI Watchdog timeout period, ChargeOption() bit [14:13] = 01(2) 35 44 53 s
Watchdog timeout period, ChargeOption() bit [14:13] = 10(2) 70 88 105 s
Watchdog timeout period, ChargeOption() bit [14:13] = 11(2) (default) 140 175 210 s
Devices participating in a transfer will timeout when any clock low exceeds the 25ms minimum timeout period. Devices that have detected a timeout condition must reset the communication no later than the 35 ms maximum timeout period. Both a master and a slave must adhere to the maximum value specified as it incorporates the cumulative stretch limit for both a master (10 ms) and a slave (25 ms).
User can adjust threshold via SMBus ChargeOption() REG0x12.

Typical Characteristics

bq24770 bq24773 D001_SLUSC03.gif
VIN = 12V/5V
Figure 1. Heavy Load Efficiency
bq24770 bq24773 D004_SLUSC03.gif
VIN = 12V/5V
Figure 3. Light Load Efficiency
bq24770 bq24773 D002_SLUSC03.gif
VIN = 19V
Figure 2. Heavy Load Efficiency
bq24770 bq24773 D005_SLUSC03.gif
VIN = 19V
Figure 4. Light Load Efficiency