SLUSEB9B december   2020  ā€“ july 2023 BQ25672

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Description (continued)
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Power-On-Reset
      2. 8.3.2  PROG Pin Configuration
      3. 8.3.3  Device Power Up from Battery without Input Source
      4. 8.3.4  Device Power Up from Input Source
        1. 8.3.4.1 Power Up REGN LDO
        2. 8.3.4.2 Poor Source Qualification
        3. 8.3.4.3 ILIM_HIZ Pin
        4. 8.3.4.4 Default VINDPM Setting
        5. 8.3.4.5 Input Source Type Detection
          1. 8.3.4.5.1 D+/Dā€“ Detection Sets Input Current Limit
          2. 8.3.4.5.2 HVDCP Detection Procedure
          3. 8.3.4.5.3 Connector Fault Detection
      5. 8.3.5  Dual-Input Power Mux
        1. 8.3.5.1 VBUS Input Only
        2. 8.3.5.2 One ACFET-RBFET
        3. 8.3.5.3 Two ACFETs-RBFETs
      6. 8.3.6  Buck Converter Operation
        1. 8.3.6.1 Force Input Current Limit Detection
        2. 8.3.6.2 Input Current Optimizer (ICO)
        3. 8.3.6.3 Maximum Power Point Tracking for Small PV Panel
        4. 8.3.6.4 Pulse Frequency Modulation (PFM)
        5. 8.3.6.5 Device HIZ State
      7. 8.3.7  USB On-The-Go (OTG)
        1. 8.3.7.1 OTG Mode to Power External Devices
      8. 8.3.8  Power Path Management
        1. 8.3.8.1 Narrow Voltage DC Architecture
        2. 8.3.8.2 Dynamic Power Management
      9. 8.3.9  Battery Charging Management
        1. 8.3.9.1 Autonomous Charging Cycle
        2. 8.3.9.2 Battery Charging Profile
        3. 8.3.9.3 Charging Termination
        4. 8.3.9.4 Charging Safety Timer
        5. 8.3.9.5 Thermistor Qualification
          1. 8.3.9.5.1 JEITA Guideline Compliance in Charge Mode
          2. 8.3.9.5.2 Cold/Hot Temperature Window in OTG Mode
      10. 8.3.10 Integrated 16-Bit ADC for Monitoring
      11. 8.3.11 Status Outputs ( STAT, and INT)
        1. 8.3.11.1 Charging Status Indicator (STAT Pin)
        2. 8.3.11.2 Interrupt to Host ( INT)
      12. 8.3.12 Ship FET Control
        1. 8.3.12.1 Shutdown Mode
        2. 8.3.12.2 Ship Mode
        3. 8.3.12.3 System Power Reset
      13. 8.3.13 Protections
        1. 8.3.13.1 Voltage and Current Monitoring
          1. 8.3.13.1.1  VAC Over-voltage Protection (VAC_OVP)
          2. 8.3.13.1.2  VBUS Over-voltage Protection (VBUS_OVP)
          3. 8.3.13.1.3  VBUS Under-voltage Protection (POORSRC)
          4. 8.3.13.1.4  System Over-voltage Protection (VSYS_OVP)
          5. 8.3.13.1.5  System Short Protection (VSYS_SHORT)
          6. 8.3.13.1.6  Battery Over-voltage Protection (VBAT_OVP)
          7. 8.3.13.1.7  Battery Over-current Protection (IBAT_OCP)
          8. 8.3.13.1.8  Input Over-current Protection (IBUS_OCP)
          9. 8.3.13.1.9  OTG Over-voltage Protection (OTG_OVP)
          10. 8.3.13.1.10 OTG Under-voltage Protection (OTG_UVP)
        2. 8.3.13.2 Thermal Regulation and Thermal Shutdown
      14. 8.3.14 Serial Interface
        1. 8.3.14.1 Data Validity
        2. 8.3.14.2 START and STOP Conditions
        3. 8.3.14.3 Byte Format
        4. 8.3.14.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 8.3.14.5 Target Address and Data Direction Bit
        6. 8.3.14.6 Single Write and Read
        7. 8.3.14.7 Multi-Write and Multi-Read
    4. 8.4 Device Functional Modes
      1. 8.4.1 Host Mode and Default Mode
      2. 8.4.2 Register Bit Reset
    5. 8.5 Register Map
      1. 8.5.1 I2C Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input (VBUS / PMID) Capacitor
        3. 9.2.2.3 Output (VSYS) Capacitor
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Narrow Voltage DC Architecture

The device deploys the NVDC architecture with a BATFET separating the system from the battery. Even with a fully depleted battery, the system is regulated above the minimum system voltage. The minimum system voltage is set by VSYSMIN bits. The default minimum system voltage at POR is determined according to different battery cell settings.

The NVDC architecture also provides the charging termination when the battery is fully charged. By turning off the BATFET, the adapter power is prioritized to support the system, which avoid the battery being continuously charged and discharged by the system load even if the adapter is present. This is very important to keep the battery in a healthy condition and extend the battery life time.

When the battery voltage is below the minimum system voltage setting, the BATFET operates in linear mode (LDO mode), and the system is regulated at around 200 mV above the minimum system voltage setting. As the battery voltage rises above the minimum system voltage, the BATFET is fully on and the voltage difference between the system and battery is the Rdson of BATFET multiplied by the charging current. When battery charging is disabled and VBAT is above the minimum system voltage setting or charging is terminated, the system is always regulated at typically 200mV (PFM disabled) or typical 600mV (PFM enabled) above battery voltage. The status register VSYS_STAT bit goes high when the system is in minimum system voltage regulation.

GUID-20AECCFB-A947-4527-A77A-63F17488ADB8-low.gifFigure 8-7 Typical System Voltage vs Battery Voltage for a 2S Battery Configuration