SLUSD83C june   2018  – may 2023 BQ25713 , BQ25713B

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Description (continued)
  7. Device Comparison Table
  8. Pin Configuration and Functions
  9. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Power-Up from Battery Without DC Source
      2. 9.3.2  Vmin Active Protection (VAP) when Battery only Mode
      3. 9.3.3  Power-Up From DC Source
        1. 9.3.3.1 CHRG_OK Indicator
        2. 9.3.3.2 Input Voltage and Current Limit Setup
        3. 9.3.3.3 Battery Cell Configuration
        4. 9.3.3.4 Device Hi-Z State
      4. 9.3.4  USB On-The-Go (OTG)
      5. 9.3.5  Converter Operation
        1. 9.3.5.1 Inductance Detection Through IADPT Pin
        2. 9.3.5.2 Continuous Conduction Mode (CCM)
        3. 9.3.5.3 Pulse Frequency Modulation (PFM)
      6. 9.3.6  Current and Power Monitor
        1. 9.3.6.1 High-Accuracy Current Sense Amplifier (IADPT and IBAT)
        2. 9.3.6.2 High-Accuracy Power Sense Amplifier (PSYS)
      7. 9.3.7  Input Source Dynamic Power Manage
      8. 9.3.8  Two-Level Adapter Current Limit (Peak Power Mode)
      9. 9.3.9  Processor Hot Indication
        1. 9.3.9.1 PROCHOT During Low Power Mode
        2. 9.3.9.2 PROCHOT Status
      10. 9.3.10 Device Protection
        1. 9.3.10.1 Watchdog Timer
        2. 9.3.10.2 Input Overvoltage Protection (ACOV)
        3. 9.3.10.3 Input Overcurrent Protection (ACOC)
        4. 9.3.10.4 System Overvoltage Protection (SYSOVP)
        5. 9.3.10.5 Battery Overvoltage Protection (BATOVP)
        6. 9.3.10.6 Battery Short
        7. 9.3.10.7 System Short Hiccup Mode
        8. 9.3.10.8 Thermal Shutdown (TSHUT)
    4. 9.4 Device Functional Modes
      1. 9.4.1 Forward Mode
        1. 9.4.1.1 System Voltage Regulation with Narrow VDC Architecture
        2. 9.4.1.2 Battery Charging
      2. 9.4.2 USB On-The-Go
      3. 9.4.3 Pass Through Mode (PTM)
    5. 9.5 Programming
      1. 9.5.1 I2C Serial Interface
        1. 9.5.1.1 Data Validity
        2. 9.5.1.2 START and STOP Conditions
        3. 9.5.1.3 Byte Format
        4. 9.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 9.5.1.5 Slave Address and Data Direction Bit
        6. 9.5.1.6 Single Read and Write
        7. 9.5.1.7 Multi-Read and Multi-Write
        8. 9.5.1.8 Write 2-Byte I2C Commands
    6. 9.6 Register Map
      1. 9.6.1  Setting Charge and PROCHOT Options
        1. 9.6.1.1 ChargeOption0 Register (I2C address = 01/00h) [reset = E70Eh]
        2. 9.6.1.2 ChargeOption1 Register (I2C address = 31/30h) [reset = 0211h]
        3. 9.6.1.3 ChargeOption2 Register (I2C address = 33/32h) [reset = 02B7h]
        4. 9.6.1.4 ChargeOption3 Register (I2C address = 35/34h) [reset = 0030h]
        5. 9.6.1.5 ProchotOption0 Register (I2C address = 37/36h) [reset = 4A65h]
        6. 9.6.1.6 ProchotOption1 Register (I2C address = 39/38h) [reset = 81A0h]
        7. 9.6.1.7 ADCOption Register (I2C address = 3B/3Ah) [reset = 2000h]
      2. 9.6.2  Charge and PROCHOT Status
        1. 9.6.2.1 ChargerStatus Register (I2C address = 21/20h) [reset = 0000h]
        2. 9.6.2.2 ProchotStatus Register (I2C address = 23/22h) [reset = A800h]
      3. 9.6.3  ChargeCurrent Register (I2C address = 03/02h) [reset = 0000h]
        1. 9.6.3.1 Battery Precharge Current Clamp
      4. 9.6.4  MaxChargeVoltage Register (I2C address = 05/04h) [reset value based on CELL_BATPRESZ pin setting]
      5. 9.6.5  MinSystemVoltage Register (I2C address = 0D/0Ch) [reset value based on CELL_BATPRESZ pin setting]
        1. 9.6.5.1 System Voltage Regulation
      6. 9.6.6  Input Current and Input Voltage Registers for Dynamic Power Management
        1. 9.6.6.1 Input Current Registers
          1. 9.6.6.1.1 IIN_HOST Register With 10-mΩ Sense Resistor (I2C address = 0F/0Eh) [reset = 4100h]
          2. 9.6.6.1.2 IIN_DPM Register With 10-mΩ Sense Resistor (I2C address = 25/24h) [reset = 4100h]
          3. 9.6.6.1.3 InputVoltage Register (I2C address = 0B/0Ah) [reset = VBUS-1.28V]
      7. 9.6.7  OTGVoltage Register (I2C address = 07/06h) [reset = 0000h]
      8. 9.6.8  OTGCurrent Register (I2C address = 09/08h) [reset = 0000h]
      9. 9.6.9  ADCVBUS/PSYS Register (I2C address = 27/26h)
      10. 9.6.10 ADCIBAT Register (I2C address = 29/28h)
      11. 9.6.11 ADCIINCMPIN Register (I2C address = 2B/2Ah)
      12. 9.6.12 ADCVSYSVBAT Register (I2C address = 2D/2Ch)
      13. 9.6.13 ID Registers
        1. 9.6.13.1 ManufactureID Register (I2C address = 2Eh) [reset = 0040h]
        2. 9.6.13.2 Device ID (DeviceAddress) Register (I2C address = 2Fh) [reset = 0h]
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 ACP-ACN Input Filter
        2. 10.2.2.2 Inductor Selection
        3. 10.2.2.3 Input Capacitor
        4. 10.2.2.4 Output Capacitor
        5. 10.2.2.5 Power MOSFETs Selection
      3. 10.2.3 Application Curves
  12. 11Power Supply Recommendations
  13. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
      1. 12.2.1 Layout Example Reference Top View
      2. 12.2.2 Inner Layer Layout and Routing Example
  14. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Capacitor

Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the charging current (plus system current there is any system load) when duty cycle is 0.5 in buck mode. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current occurs where the duty cycle is closest to 50% and can be estimated by Equation 5:

Equation 5. GUID-5D8A225B-9109-44CD-A437-FCC52ABCEE3C-low.gif

Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be placed in front of RAC current sensing and as close as possible to the power stage half bridge MOSFETs. Capacitance after RAC before power stage half bridge should be limited to 10 nF + 1 nF referring to Figure 10-2. Because too large capacitance after RAC could filter out RAC current sensing ripple information. Voltage rating of the capacitor must be higher than normal input voltage level, 25-V rating or higher capacitor is preferred for 19-V to 20-V input voltage. The minimum input effective capacitance recommendation is shown in Table 10-1.

Ceramic capacitors (MLCC) show a dc-bias effect. This effect reduces the effective capacitance when a dc-bias voltage is applied across a ceramic capacitor, as on the input capacitor of a charger. The effect may lead to a significant capacitance drop, especially for high input voltages and small capacitor packages. See the manufacturer's datasheet about the derating performance with a dc bias voltage applied. It may be necessary to choose a higher voltage rating or nominal capacitance value in order to get the required effective capacitance value at the operating point. Considering the 25 V 0603 package MLCC capacitance derating under 19-V to 20-V input voltage, the recommended practical capacitors configuration can also be found in Table 10-1. Tantalum capacitors (POSCAP) can avoid dc-bias effect and temperature variation effect which is recommended for 90 W to 130 W higher power application.

Table 10-1 Minimum Input Capacitance Requirement
INPUT CAPACITORS VS TOTAL INPUT POWER 65W 90W 130W
Minimum effective input capacitance 4 μF 6 μF 13 μF
Minimum practical input capacitors configuration 4*10 μF (0603 25 V MLCC) 6*10 μF (0603 25 V MLCC) 3*10 μF (0603 25 V MLCC)

1* 10 μF (25 V to 35 V POSCAP)