SLUSEK7 September   2024 BQ25773

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics BQ2577X
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-Up Sequence
      2. 7.3.2  MODE Pin Detection
      3. 7.3.3  REGN Regulator (REGN LDO)
      4. 7.3.4  Independent Comparator Function
      5. 7.3.5  Battery Charging Management
        1. 7.3.5.1 Autonomous Charging Cycle
        2. 7.3.5.2 Battery Charging Profile
        3. 7.3.5.3 Charging Termination
        4. 7.3.5.4 Charging Safety Timer
      6. 7.3.6  Temperature Regulation (TREG)
      7. 7.3.7  Vmin Active Protection (VAP) When Battery Only Mode
      8. 7.3.8  Two Level Battery Discharge Current Limit
      9. 7.3.9  Fast Role Swap Feature
      10. 7.3.10 CHRG_OK Indicator
      11. 7.3.11 Input and Charge Current Sensing
      12. 7.3.12 Input Current and Voltage Limit Setup
      13. 7.3.13 Battery Cell Configuration
      14. 7.3.14 Device HIZ State
      15. 7.3.15 USB On-The-Go (OTG)
      16. 7.3.16 Quasi Dual Phase Converter Operation
      17. 7.3.17 Continuous Conduction Mode (CCM)
      18. 7.3.18 Pulse Frequency Modulation (PFM)
      19. 7.3.19 Switching Frequency and Dithering Feature
      20. 7.3.20 Current and Power Monitor
        1. 7.3.20.1 High-Accuracy Current Sense Amplifier (IADPT and IBAT)
        2. 7.3.20.2 High-Accuracy Power Sense Amplifier (PSYS)
      21. 7.3.21 Input Source Dynamic Power Management
      22. 7.3.22 Integrated 16-Bit ADC for Monitoring
      23. 7.3.23 Input Current Optimizer (ICO)
      24. 7.3.24 Two-Level Adapter Current Limit (Peak Power Mode)
      25. 7.3.25 Processor Hot Indication
        1. 7.3.25.1 PROCHOT During Low Power Mode
        2. 7.3.25.2 PROCHOT Status
      26. 7.3.26 Device Protection
        1. 7.3.26.1  Watchdog Timer (WD)
        2. 7.3.26.2  Input Overvoltage Protection (ACOV)
        3. 7.3.26.3  Input Overcurrent Protection (ACOC)
        4. 7.3.26.4  System Overvoltage Protection (SYSOVP)
        5. 7.3.26.5  Battery Overvoltage Protection (BATOVP)
        6. 7.3.26.6  Battery Charge Overcurrent Protection (BATCOC)
        7. 7.3.26.7  Battery Discharge Overcurrent Protection (BATDOC)
        8. 7.3.26.8  BATFET Charge Current Clamp Protection under LDO Regulation Mode
        9. 7.3.26.9  Sleep Comparator Protection Between VBUS and ACP_A (SC_VBUSACP)
        10. 7.3.26.10 High Duty Buck Exit Comparator Protection (HDBCP)
        11. 7.3.26.11 REGN Power Good Protection (REGN_PG)
        12. 7.3.26.12 System Under Voltage Lockout (VSYS_UVP) and Hiccup Mode
        13. 7.3.26.13 OTG Mode Over Voltage Protection (OTG_OVP)
        14. 7.3.26.14 OTG Mode Under Voltage Protection (OTG_UVP)
        15. 7.3.26.15 Thermal Shutdown (TSHUT)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Forward Mode
        1. 7.4.1.1 System Voltage Regulation with Narrow VDC Architecture
        2. 7.4.1.2 Battery Charging
      2. 7.4.2 USB On-The-Go Mode
      3. 7.4.3 Pass Through Mode (PTM)-Patented Technology
      4. 7.4.4 Learn Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Serial Interface
        1. 7.5.1.1 Timing Diagrams
        2. 7.5.1.2 Data Validity
        3. 7.5.1.3 START and STOP Conditions
        4. 7.5.1.4 Byte Format
        5. 7.5.1.5 Acknowledge (ACK) and Not Acknowledge (NACK)
        6. 7.5.1.6 Target Address and Data Direction Bit
        7. 7.5.1.7 Single Read and Write
        8. 7.5.1.8 Multi-Read and Multi-Write
        9. 7.5.1.9 Write 2-Byte I2C Commands
    6. 7.6 BQ25773 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Snubber and Filter for Voltage Spike Damping
        2. 8.2.2.2 ACP-ACN Input Filter
        3. 8.2.2.3 Inductor Selection
        4. 8.2.2.4 Input Capacitor
        5. 8.2.2.5 Output Capacitor
        6. 8.2.2.6 Power MOSFETs Selection
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Layout Example Reference Top View
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • REE|36
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input and Charge Current Sensing

The charger supports 10 mΩ and 5 mΩ for input current sensing . By default 10 mΩ is enabled by POR setting RSNS_RAC=0b. If 5-mΩ sensing is used, configure RSNS_RAC=1b. Lower current sensing resistor can help improve overall charge efficiency especially under heavy load. At same time, PSYS/IADPT pin accuracy and IINDPM/IOTG regulation accuracy get worse due to effective signal reduction in comparison to error signal components.

The charger supports 5 mΩ and 2 mΩ for charge current sensing . By default 5 mΩ is enabled by POR setting RSNS_RSR=0b. If 2-mΩ sensing is used, configure RSNS_RSR=1b. Lower current sensing resistor can help improve overall charge efficiency especially under heavy load. At same time, PSYS/IBAT pin accuracy and ICHG/IPRECHG regulation accuracy is reduced due to effective signal reduction in comparison to error signal components.

When RSNS_RAC=RSNS_RSR=0b, 10 mΩ is used for input current sensing and 5 mΩ is used for charge current sensing, the pre-charge current upper limit is clamped at 2016 mA through IPRECHG() register, the maximum IIN_HOST setting is clamped at 8.2 A, and the maximum charge current is clamped at 16.32 A.

When RSNS_RAC=RSNS_RSR=1b, 5 mΩ is used for input current sensing and 2 mΩ is used for charge current sensing, the maximum IIN_HOST setting is clamped at 16.4 A. The maximum charge current is clamped at 30 A (with 20 mA LSB , 5DCh for CHARGE_CURRENT[13:3]). System note: Under 2-mΩ charge resistor, the pre-charge current upper limit is compensated and still clamped at 2040 mA through IPRECHG() register (66H). However IBAT_SHORT does not need to be compensated should increase from 128 mA (RSR=5 mΩ) to 320 mA(RSR=2 mΩ).

If PSYS function is needed, practical input current sensing and charge current sensing should be consistent with RSNS_RSR and RSNS_RAC configuration. This is necessary because of the PSYS calculation method referring to Equation 2.