SLUSFH5 May   2024 BQ25856-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Device Power-On-Reset
      2. 6.3.2  Device Power-Up From Battery Without Input Source
      3. 6.3.3  Device Power Up from Input Source
        1. 6.3.3.1 VAC Operating Window Programming (ACUV and ACOV)
        2. 6.3.3.2 REGN Regulator (REGN LDO)
        3. 6.3.3.3 Compensation-Free Buck-Boost Converter Operation
          1. 6.3.3.3.1 Light-Load Operation
        4. 6.3.3.4 Switching Frequency and Synchronization (FSW_SYNC)
        5. 6.3.3.5 Device HIZ Mode
      4. 6.3.4  Battery Charging Management
        1. 6.3.4.1 Autonomous Charging Cycle
          1. 6.3.4.1.1 Charge Current Programming (ICHG pin and ICHG_REG)
        2. 6.3.4.2 Li-Ion Battery Charging Profile
        3. 6.3.4.3 LiFePO4 Battery Charging Profile
        4. 6.3.4.4 Charging Termination for Li-ion and LiFePO4
        5. 6.3.4.5 Charging Safety Timer
        6. 6.3.4.6 Thermistor Qualification
          1. 6.3.4.6.1 JEITA Guideline Compliance in Charge Mode
          2. 6.3.4.6.2 Cold/Hot Temperature Window in Reverse Mode
      5. 6.3.5  Power Management
        1. 6.3.5.1 Dynamic Power Management: Input Voltage and Input Current Regulation
          1. 6.3.5.1.1 Input Current Regulation
            1. 6.3.5.1.1.1 ILIM_HIZ Pin
          2. 6.3.5.1.2 Input Voltage Regulation
      6. 6.3.6  Switching Frequency and Dithering Feature
      7. 6.3.7  Reverse Mode Power Direction
      8. 6.3.8  Integrated 16-Bit ADC for Monitoring
      9. 6.3.9  Status Outputs (PG, STAT1, STAT2, and INT)
        1. 6.3.9.1 Power Good Indicator (PG)
        2. 6.3.9.2 Charging Status Indicator (STAT1, STAT2 Pins)
        3. 6.3.9.3 Interrupt to Host (INT)
      10. 6.3.10 Protections
        1. 6.3.10.1 Voltage and Current Monitoring
          1. 6.3.10.1.1 VAC Over-voltage Protection (VAC_OVP)
          2. 6.3.10.1.2 VAC Under-voltage Protection (VAC_UVP)
          3. 6.3.10.1.3 Battery Over-voltage Protection (BAT_OVP)
          4. 6.3.10.1.4 Battery Over-current Protection (BAT_OCP)
          5. 6.3.10.1.5 Reverse Mode Over-voltage Protection (REV_OVP)
          6. 6.3.10.1.6 Reverse Mode Under-voltage Protection (REV_UVP)
          7. 6.3.10.1.7 DRV_SUP Under-voltage and Over-voltage Protection (DRV_OKZ)
          8. 6.3.10.1.8 REGN Under-voltage Protection (REGN_OKZ)
        2. 6.3.10.2 Thermal Shutdown (TSHUT)
      11. 6.3.11 Serial Interface
        1. 6.3.11.1 Data Validity
        2. 6.3.11.2 START and STOP Conditions
        3. 6.3.11.3 Byte Format
        4. 6.3.11.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 6.3.11.5 Target Address and Data Direction Bit
        6. 6.3.11.6 Single Write and Read
        7. 6.3.11.7 Multi-Write and Multi-Read
    4. 6.4 Device Functional Modes
      1. 6.4.1 Host Mode and Default Mode
      2. 6.4.2 Register Bit Reset
    5. 6.5 BQ25856-Q1 Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Typical Application
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 ACUV / ACOV Input Voltage Operating Window Programming
          2. 7.2.1.2.2 Charge Voltage Selection
          3. 7.2.1.2.3 Switching Frequency Selection
          4. 7.2.1.2.4 Inductor Selection
          5. 7.2.1.2.5 Input (VAC) Capacitor
          6. 7.2.1.2.6 Output (VBAT) Capacitor
          7. 7.2.1.2.7 Sense Resistor (RAC_SNS and RBAT_SNS) and Current Programming
          8. 7.2.1.2.8 Power MOSFETs Selection
          9. 7.2.1.2.9 Converter Fast Transient Response
      2. 7.2.2 Typical Application (4s LiFePO4 car battery configuration)
        1. 7.2.2.1 Design Requirements
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Packaging Information
    2. 12.2 Tape and Reel Information
    3. 12.3 Mechanical Data

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RRV|36
Thermal pad, mechanical data (Package|Pins)

VAC Operating Window Programming (ACUV and ACOV)

The VAC operating window can be programmed via the ACUV and ACOV pins using a three-resistor divider from VAC to PGND as shown in Figure 6-1.

BQ25856-Q1 ACUV and ACOV ProgrammingFigure 6-1 ACUV and ACOV Programming

When VACUV falls and reaches VACUV_DPM, the device enters input voltage regulation, thereby reducing the charge current. VACUV continues falling below VREF_ACUV, the device automatically stops the converter and the PG pin pulls high.

System Note: if VAC_DPM register is programmed to a value higher than POR, the device regulates the VAC voltage to the higher of VAC_DPM register or VACUV_DPM pin voltage. Refer to Section 6.3.5.1.2 for more information.

When VACOV rises above VREF_ACOV, the device automatically stops the converter and the PG pin pulls high.

The following equations govern the relationship between the resistor divider and the target operating voltage window programmed by ACOV and ACUV pins:

Equation 1. VACOV_TARGET=VREF_ACOV×RAC1+RAC2+RAC3RAC3
Equation 2. VACUV_TARGET=VREF_ACUV×RAC1+RAC2+RAC3RAC2+RAC3

If unused, tie ACUV to VAC and ACOV to PGND in order to apply the internal VAC operating window (VVAC_OP).